首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In Saccharomyces cerevisiae, Mre11p, Rad50p, and Xrs2p function as a multiprotein complex that has a central role in several DNA repair mechanisms. Though Mre11p has both single-stranded and double-stranded 3'-5' exonuclease activity in vitro, null mutants of MRE11, RAD50, and XRS2 exhibit reduced 5'-3' resection of HO-induced double-strand breaks (DSBs) in vivo. In this study, we analyzed four mre11 mutants harboring changes in the N-terminus of Mre11p where the four phosphoesterase motifs specify the in vitro nuclease activities of Mre11p and its homologues. We find that the 5'-3' resection defects in vivo do not correlate with several mitotic phenotypes: non-homologous end-joining (NHEJ), telomere length maintenance, and adaptation to the DNA damage-inducible G2/M checkpoint. Overexpression of the 5'-3' exonuclease Exo1p in a mre11Delta strain partially increased 5'-3' resection and partially suppressed both methyl methanesulfonate (MMS) hypersensitivity and adaptation phenotypes, but did not affect telomere length or NHEJ. Surprisingly, the co-expression of two alleles, mre11-58S and mre11-N113S, each of which confers MMS hypersensitivity and short telomeres, can fully complement the MMS sensitivity and shortened telomere length of mre11Delta cells. We propose that at least two separate activities associated with the N-terminus of Mre11p are required for its mitotic function.  相似文献   

3.
4.
DNA复制是最基本的生命活动之一。DNA复制本身的错误及其过程控制的异常是细胞内基因组不稳定的主要来源,会导致细胞生长异常、衰老、癌变乃至死亡。为了保证基因组DNA能够精确且完整的复制,DNA复制受到严格的调控。在G1期,DNA复制解旋酶的核心组分Mcm2-7复合体被招募到复制起点,获得复制许可资格。进入S期后,在两个周期性蛋白激酶及多个支架蛋白的作用下,复制解旋酶的激活因子Cdc45和GINS复合体被招募至Mcm2-7,形成解旋酶全酶Cdc45-Mcm2-7-GINS (CMG)复合体。随后,众多复制相关蛋白在精准的时空控制下被招募至CMG平台并组装成复制机器,起始DNA双向复制。当相向而行的两个复制叉相遇,复制机器会从DNA链上解离下来,从而完成DNA复制。关于DNA复制过程的研究在近十年来取得了跨越式的突破。本文以酿酒酵母为例,围绕所有真核生物中都高度保守的DNA复制控制开关——CMG解旋酶,对真核生物DNA复制的最新进展进行综述。  相似文献   

5.
Chatre L  Ricchetti M 《PloS one》2011,6(3):e17235
The nuclear genome of eukaryotes is colonized by DNA fragments of mitochondrial origin, called NUMTs. These insertions have been associated with a variety of germ-line diseases in humans. The significance of this uptake of potentially dangerous sequences into the nuclear genome is unclear. Here we provide functional evidence that sequences of mitochondrial origin promote nuclear DNA replication in Saccharomyces cerevisiae. We show that NUMTs are rich in key autonomously replicating sequence (ARS) consensus motifs, whose mutation results in the reduction or loss of DNA replication activity. Furthermore, 2D-gel analysis of the mrc1 mutant exposed to hydroxyurea shows that several NUMTs function as late chromosomal origins. We also show that NUMTs located close to or within ARS provide key sequence elements for replication. Thus NUMTs can act as independent origins, when inserted in an appropriate genomic context or affect the efficiency of pre-existing origins. These findings show that migratory mitochondrial DNAs can impact on the replication of the nuclear region they are inserted in.  相似文献   

6.
7.
To test whether missense mutations in the cancer susceptibility gene MLH1 adversely affect meiosis, we examined 14 yeast MLH1 mutations for effects on meiotic DNA transactions and gamete viability in the yeast Saccharomyces cerevisiae. Mutations analogous to those associated with hereditary nonpolyposis colorectal cancer (HNPCC) or those that reduce Mlh1p interactions with ATP or DNA all impair replicative mismatch repair as measured by increased mutation rates. However, their effects on meiotic heteroduplex repair, crossing over, chromosome segregation, and gametogenesis vary from complete loss of meiotic functions to no meiotic defect, and mutants defective in one meiotic process are not necessarily defective in others. DNA binding and ATP binding but not ATP hydrolysis are required for meiotic crossing over. The results reveal clear separation of different Mlh1p functions in mitosis and meiosis, and they suggest that some, but not all, MLH1 mutations may be a source of human infertility.  相似文献   

8.
Previous studies have demonstrated that bent DNA is a conserved property of Saccharomyces cerevisiae autonomously replicating sequences (ARSs). Here we showed that bending elements are contained within ARS subdomains identified by others as replication enhancers. To provide a direct test for the function of this unusual structure, we analyzed the ARS activity of plasmids that contained synthetic bent DNA substituted for the natural bending element in yeast ARS1. The results demonstrated that deletion of the natural bending locus impaired ARS activity which was restored to a near wild-type level with synthetic bent DNA. Since the only obvious common features of the natural and synthetic bending elements are the sequence patterns that give rise to DNA bending, the results suggest that the bent structure per se is crucial for ARS function.  相似文献   

9.
10.
11.
The termini of Saccharomyces cerevisiae chromosomes consist of tracts of C1-3A (one to three cytosine and one adenine residue) sequences of approximately 450 base pairs in length. To gain insights into trans-acting factors at telomeres, high-copy-number linear and circular plasmids containing tracts of C1-3A sequences were introduced into S. cerevisiae. We devised a novel system to distinguish by color colonies that maintained the vector at 1 to 5, 20 to 50, and 100 to 400 copies per cell and used it to change the amount of telomeric DNA sequences per cell. An increase in the number of C1-3A sequences caused an increase in the length of telomeric C1-3A repeats that was proportional to plasmid copy number. Our data suggest that telomere growth is inhibited by a limiting factor(s) that specifically recognizes C1-3A sequences and that this factor can be effectively competed for by long tracts of C1-3A sequences at telomeres or on circular plasmids. Telomeres without this factor are exposed to processes that serve to lengthen chromosome ends.  相似文献   

12.
A novel DNA helicase has been isolated from Saccharomyces cerevisiae. This DNA helicase co-purified with replication factor C (RF-C) during chromatography on S-Sepharose, DEAE-silica gel high performance liquid chromatography (HPLC), Affi-Gel Blue-agarose, heparin-agarose, single-stranded DNA-cellulose, fast protein liquid chromatography MonoS, and hydroxyapatite HPLC. Surprisingly, the helicase could be separated from RF-C by sedimentation on a glycerol gradient in the presence of 200 mM NaCl. The helicase is probably a homodimer of a 60-kDa polypeptide, which by UV cross-linking has been shown to bind ATP. It has a single-stranded DNA-dependent ATPase activity, with a Km for ATP of 60 microM. The DNA helicase activity depends on the hydrolysis of NTP (dNTP), with ATP and dATP the most efficient cofactors, followed by CTP and dCTP. The DNA helicase has a 5' to 3' directionality and is only marginally stimulated by coating the single-stranded DNA with the yeast single-stranded DNA-binding protein RF-A.  相似文献   

13.
We have isolated a dominant suppressor of rna mutation (SRN1) that relieves the temperature-sensitive inhibition of mRNA synthesis of ribosomal protein genes in the yeast Saccharomyces cerevisiae. The suppressor was selected for its ability to alleviate simultaneously the temperature-sensitive growth phenotypes of rna2 and rna6. Several independently isolated suppressors appeared to be recessive lethal mutations. One suppressor, SRN1, was recovered as viable in haploid strains. SRN1 can suppress rna2, rna3, rna4, rna5, rna6, and rna8 singly or in pairs, although some combinations of rna mutations are less well suppressed than others. The suppressor allows strains with rna mutations to grow at 34 degrees C but is unable to suppress at 37 degrees C; however, SRN1 does not, by itself, prevent growth at 37 degrees C. In addition, SRN1 suppresses the rna1 mutation which affects general mRNA levels and also leads to the accumulation of precursor tRNA for those tRNAs that have intervening sequences. SRN1 can suppress the rna1 mutation as well as the rna1 rna2 double mutation at 34 degrees C. The suppressor does not affect the temperature-sensitive growth of two unrelated temperature-sensitive mutations, cdc4 and cdc7.  相似文献   

14.
We have examined the roles of eukaryotic DNA topoisomerases I and II in DNA replication by the use of a set of four isogenic strains of Saccharomyces cerevisiae that are TOP1+ TOP2+, TOP1+ top2 ts, delta top1 TOP2+, and delta top1 top2 ts. Cells synchronized by treatment with the alpha-mating factor, or by cycles of feeding and starvation, were released from cell-cycle arrest, and the size distribution of DNA chains that were synthesized after the cells reentered the S-phase was determined as a function of time. The results indicate that synthesis of short DNA chains several thousand nucleotides in length can initiate in the absence of both topoisomerases, but their further elongation requires at least one of the two topoisomerases. Inactivation of DNA topoisomerase II does not alter significantly the time dependence of the patterns of nascent DNA chain synthesis, which is consistent with the notion that the requirement of this enzyme for viability is due to its essential role during mitosis, when pairs of intertwined newly replicated chromosomes are being segregated. The absence of DNA topoisomerase I leads to a temporary delay in the extension of the short DNA chains; this delay in chain elongation is also reflected in the rate of total DNA synthesis in the delta top1 mutant during the early S-phase. Thus, in wild-type cells, DNA topoisomerase I is probably the major replication swivel. The patterns of DNA synthesis in asynchronously grown delta top1 top2 ts cells at permissive and non-permissive temperatures are also consistent with the above conclusions.  相似文献   

15.
16.
We studied the replication of random genomic DNA fragments from Saccharomyces cerevisiae in a long-term assay in human cells. Plasmids carrying large yeast DNA fragments were able to replicate autonomously in human cells. Efficiency of replication of yeast DNA fragments was comparable to that of similarly sized human DNA fragments and better than that of bacterial DNA. This result suggests that yeast genomic DNA contains sequence information needed for replication in human cells. To examine whether DNA replication in human cells would initiate specifically at a yeast origin of replication, we monitored initiation on a plasmid containing the yeast 2-micron autonomously replicating sequence (ARS) in yeast and human cells. We found that while replication initiates at the 2-micron ARS in yeast, it does not preferentially initiate at the ARS in human cells. This result suggests that the sequences that direct site specific replication initiation in yeast do not function in the same way in human cells, which initiate replication at a broader range of sequences.by J.A. Huberman  相似文献   

17.
18.
The ribosomal DNA (rDNA) repeats of Saccharomyces cerevisiae contain an autonomously replicating sequence (ARS) that colocalizes with a chromosomal origin of replication. We show that a minimal sequence necessary for full ARS function corresponds to a 107-bp rDNA fragment which contains three 10-of-11-bp matches to the ARS consensus sequence. Point mutations in only one of the 10-of-11-bp matches, GTTTAT GTTTT, inactivate the rDNA ARS, indicating that this consensus sequence is essential. A perfect match to a revised ARS consensus is present but not essential. Sequences up to 9 bp 5' from the essential consensus are dispensable. A broad DNA region directly 3' to the essential consensus is required and is easily unwound as indicated by: (i) hypersensitivity to nicking of an approximately 100-bp region by mung bean nuclease in a negatively supercoiled plasmid and (ii) helical instability determined by thermodynamic analysis of the nucleotide sequence. A correlation between DNA helical instability and replication efficiency of wild-type and mutated ribosomal ARS derivatives suggests that a broad region 3' to the essential ARS consensus functions as a DNA unwinding element. Certain point mutations that do not stabilize the DNA helix in the 3' region but reduce ARS efficiency reveal an element distinct from, but overlapping, the DNA unwinding element. The nucleotide sequence of the functionally important constituents in the ARS appears to be conserved among the rDNA repeats in the chromosome.  相似文献   

19.
Over-initiation of DNA replication in cells containing the cold-sensitive dnaA(cos) allele has been shown to lead to extensive DNA damage, potentially due to head-to-tail replication fork collisions that ultimately lead to replication fork collapse, growth stasis and/or cell death. Based on the assumption that suppressors of the cold-sensitive phenotype of the cos mutant should include mutations that affect the efficiency and/or regulation of DNA replication, we subjected a dnaA(cos) mutant strain to transposon mutagenesis and selected mutant derivatives that could form colonies at 30 degrees C. Four suppressors of the dnaA(cos)-mediated cold sensitivity were identified and further characterized. Based on origin to terminus ratios, chromosome content per cell, measured by flow cytometry, and sensitivity to the replication fork inhibitor hydroxyurea, the suppressors fell into two distinct categories: those that directly inhibit over-initiation of DNA replication and those that act independently of initiation. Mutations that decrease the cellular level of HolC, the chi subunit of DNA polymerase, or loss of ndk (nucleoside diphosphate kinase) function fall into the latter category. We propose that these novel suppressor mutations function by decreasing the efficiency of replication fork movement in vivo, either by decreasing the dynamic exchange of DNA polymerase subunits in the case of HolC, or by altering the balance between DNA replication and deoxynucleoside triphosphate synthesis in the case of ndk. Additionally, our results indicate a direct correlation between over-initiation and sensitivity to replication fork inhibition by hydroxyurea, supporting a model of increased head-to-tail replication fork collisions due to over-initiation.  相似文献   

20.
Super-suppressor mutations in Saccharomyces cerevisiae   总被引:5,自引:0,他引:5  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号