首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Elongation factor Ts (EF-Ts) is the guanine nucleotide exchange factor for elongation factor Tu (EF-Tu). An important feature of the nucleotide exchange is the structural rearrangement of EF-Tu in the EF-Tu.EF-Ts complex caused by insertion of Phe-81 of EF-Ts between His-84 and His-118 of EF-Tu. In this study, the contribution of His-118 to nucleotide release was studied by pre-steady state kinetic analysis of nucleotide exchange in EF-Tu mutants in which His-118 was replaced by Ala or Glu. Intrinsic as well as EF-Ts-catalyzed release of GDP/GTP was affected by the mutations, resulting in an approximately 10-fold faster spontaneous nucleotide release and a 10-50-fold slower EF-Ts-catalyzed nucleotide release. The effects are attributed to the interference of the mutations with the EF-Ts-induced movements of the P-loop of EF-Tu and changes at the domain 1/3 interface, leading to the release of the beta-phosphate group of GTP/GDP. The K(d) for GTP is increased by more than 40 times when His-118 is replaced with Glu, which may explain the inhibition by His-118 mutations of aminoacyl-tRNA binding to EF-Tu. The mutations had no effect on EF-Tu-dependent delivery of aminoacyl-tRNA to the ribosome.  相似文献   

2.
An analysis is made of the rate constants for the reactions involving the interactions of EF-Tu, EF-Ts, GDP, and GTP recently derived by Gromadski et al. [Biochemistry 41 (2002) 162]. Though their measured values appear to allow a reasonable rate of nucleotide exchange sufficient to support rates of protein synthesis in vivo, their data underestimate the thermodynamic barrier involved in nucleotide exchange and therefore cannot be considered definitive. A kinetic scheme consistent with the thermodynamic barrier can be achieved by modification of various rate constants, particularly of those involving the release of EF-Ts from EF-Tu.GTP.EF-Ts, but such constants are markedly different from what are experimentally observed. It thus remains impossible at present satisfactorily to model guanine nucleotide exchange on EF-Tu, catalysed by EF-Ts by a double displacement mechanism, with experimentally derived rate constants. Metabolic control analysis has been applied to determine the degree of flux control of the different steps in the pathway.  相似文献   

3.
Heo J  Gao G  Campbell SL 《Biochemistry》2004,43(31):10102-10111
p21Ras (Ras) proteins cycle between active GTP-bound and inactive GDP-bound states to mediate signal transduction pathways that promote cell growth, differentiation, and apoptosis. To better understand how cellular regulatory factors, such as guanine nucleotide exchange factors (GEFs) and nitric oxide (NO), modulate Ras-guanine nucleotide binding interactions, we have conducted NMR and kinetic studies to investigate the pH dependence of Ras-GDP interactions and Ras-guanine nucleotide exchange (GNE). pH-sensitive amide protons were identified and found to be associated with residues in the switch I (Phe28-Asp30) and switch II (Asp57 and Thr58) regions of Ras. Furthermore, most of the residues that interact with Mg2+ exhibit pH-sensitive amide proton chemical shifts which appear to be coupled to pH-dependent Ras Mg2+ binding and guanine nucleotide binding affinity. These results suggest that perturbation of Mg2+ interactions within the Ras-guanine nucleotide complex is critical for pH-dependent dissociation of guanine nucleotide ligands from Ras. Notably, these same regions undergo conformational changes upon association with the Ras GEF, SOS. In addition, although we have recently shown that addition of NO to Ras in the presence of oxygen produces a Ras thiyl radical intermediate that promotes Ras GNE, we have also postulated that another byproduct of this reaction, a H+, may contribute to NO-mediated GNE. However, the results presented herein suggest that the H+ byproduct of the reaction is unlikely to be involved in the NO-mediated Ras GNE.  相似文献   

4.
Nucleotide exchange in elongation factor Tu (EF-Tu) is catalyzed by elongation factor Ts (EF-Ts). Similarly to other GTP-binding proteins, the structural changes in the P loop and the Mg(2+) binding site are known to be important for nucleotide release from EF-Tu. In the present paper, we determine the contribution of the contacts between helix D of EF-Tu at the base side of the nucleotide and the N-terminal domain of EF-Ts to the catalysis. The rate constants of the multistep reaction between Escherichia coli EF-Tu, EF-Ts, and GDP were determined by stopped-flow kinetic analysis monitoring the fluorescence of either Trp-184 in EF-Tu or mant-GDP. Mutational analysis shows that contacts between helix D of EF-Tu and the N-terminal domain of EF-Ts are important for both complex formation and the acceleration of GDP dissociation. The kinetic results suggest that the initial contact of EF-Ts with helix D of EF-Tu weakens binding interactions around the guanine base, whereas contacts of EF-Ts with the phosphate binding side that promotes the release of the phosphate moiety of GDP appear to take place later. This "base-side-first" mechanism of guanine nucleotide release resembles that found for Ran x RCC1 and differs from mechanisms described for other GTPase x GEF complexes where interactions at the phosphate side of the nucleotide are released first.  相似文献   

5.
The guanine nucleotide exchange factor (GEF) Vav1 plays an important role in T-cell activation and tumorigenesis. In the GEF superfamily, Vav1 has the ability to interact with multiple families of Rho GTPases. The structure of the Vav1 DH-PH-CRD/Rac1 complex to 2.6 Å resolution reveals a unique intramolecular network of contacts between the Vav1 cysteine-rich domain (CRD) and the C-terminal helix of the Vav1 Dbl homology (DH) domain. These unique interactions stabilize the Vav1 DH domain for its intimate association with the Switch II region of Rac1 that is critical for the displacement of the guanine nucleotide. Small angle x-ray scattering (SAXS) studies support this domain arrangement for the complex in solution. Further, mutational analyses confirms that the atypical CRD is critical for maintaining both optimal guanine nucleotide exchange activity and broader specificity of Vav family GEFs. Taken together, the data outline the detailed nature of Vav1's ability to contact a range of Rho GTPases using a novel protein-protein interaction network.  相似文献   

6.
7.
Photolyzed rhodopsin acts in a catalytic manner to mediate the exchange of GTP for GDP bound to transducin. We have analyzed the steady-state kinetics of this activation process in order to determine the molecular mechanism of interactions between rhodopsin, transducin, and guanine nucleotides. Initial velocities (Vo) of the exchange reaction catalyzed by rhodopsin were measured for various transducin concentrations at several fixed levels of the GTP analog, [35S]guanosine 5'-(3-O-thio)triphosphate (GTP gamma S). The initial rate data analysis rigorously demonstrates that rhodopsin mediates the activation of transducin by a double-displacement catalytic mechanism. The Michaelis-Menten curves determined as a function of [transducin] reveal remarkable allosteric behavior; analysis of this data yields a Hill coefficient of 2. Lineweaver-Burk plots of Vo-1 versus [transducin]-1 display curvilinearity indicative of positive cooperativity and a series of parallel lines are generated by plotting Vo-1 as a function of [transducin]-2. The plots of Vo-1 versus [GTP gamma S]-1 show no evidence of allosterism and are a parallel series. Furthermore, the allosteric behavior observed in the activation of transducin is also witnessed in the rhodopsin-catalyzed guanine nucleotide exchange of the G protein's purified alpha subunit in the absence of the beta X gamma subunit complex. The latter observation implies that the molecular basis for allosterism in the activation process resides in the interactions between the photoreceptor and transducin's alpha subunit.  相似文献   

8.
We recently clarified the physiological formation of 8-nitroguanosine 3′,5′-cyclic monophosphate (8-nitro-cGMP) and its critical roles in nitric oxide (NO) signal transductions. This discovery of 8-nitro-cGMP is the first demonstration of a nitrated cyclic nucleotide functioning as a new second messenger in mammals since the identification of cGMP more than 40 years ago. By means of chemical analyses, e.g., liquid chromatography–tandem mass spectrometry, we unequivocally identified 8-nitro-cGMP formation, which depended on NO production, in several types of cultured cells, including macrophages and glial cells. Most important, we previously showed that 8-nitro-cGMP as an electrophile reacted with particular sulfhydryls of proteins to generate a unique post-translational modification that we called protein S-guanylation. In fact, certain specific intracellular proteins, such as the redox-sensor protein Keap1, readily underwent S-guanylation induced by 8-nitro-cGMP. 8-Nitro-cGMP activated the Nrf2 signaling pathway by triggering dissociation of Keap1, via S-guanylation of its highly nucleophilic cysteine sulfhydryls. We also determined that S-guanylation of Keap1 was involved in cytoprotective actions of NO and 8-nitro-cGMP by inducing oxidative stress response genes such as heme oxygenase-1. Such unique chemical properties of 8-nitro-cGMP shed light on new areas of NO and cGMP signal transduction. Protein S-guanylation induced by 8-nitro-cGMP may thus have important implications in NO-related physiology and pathology, pharmaceutical chemistry, and development of therapeutics for many diseases.  相似文献   

9.
10.
RIN1 was originally identified by its ability to inhibit activated Ras and likely participates in multiple signaling pathways because it binds c-ABL and 14-3-3 proteins, in addition to Ras. RIN1 also contains a region homologous to the catalytic domain of Vps9p-like Rab guanine nucleotide exchange factors (GEFs). Here, we show that this region is necessary and sufficient for RIN1 interaction with the GDP-bound Rabs, Vps21p, and Rab5A. RIN1 is also shown to stimulate Rab5 guanine nucleotide exchange, Rab5A-dependent endosome fusion, and EGF receptor-mediated endocytosis. The stimulatory effect of RIN1 on all three of these processes is potentiated by activated Ras. We conclude that Ras-activated endocytosis is facilitated, in part, by the ability of Ras to directly regulate the Rab5 nucleotide exchange activity of RIN1.  相似文献   

11.
12.
Dbl-related oncoproteins are guanine nucleotide exchange factors (GEFs) specific for Rho guanosine triphosphatases (GTPases) and invariably possess tandem Dbl (DH) and pleckstrin homology (PH) domains. While it is known that the DH domain is the principal catalytic subunit, recent biochemical data indicate that for some Dbl-family proteins, such as Dbs and Trio, PH domains may cooperate with their associated DH domains in promoting guanine nucleotide exchange of Rho GTPases. In order to gain an understanding of the involvement of these PH domains in guanine nucleotide exchange, we have determined the crystal structure of a DH/PH fragment from Dbs in complex with Cdc42. The complex features the PH domain in a unique conformation distinct from the PH domains in the related structures of Sos1 and Tiam1.Rac1. Consequently, the Dbs PH domain participates with the DH domain in binding Cdc42, primarily through a set of interactions involving switch 2 of the GTPase. Comparative sequence analysis suggests that a subset of Dbl-family proteins will utilize their PH domains similarly to Dbs.  相似文献   

13.
RasGRP proteins are activators of Ras and other related small GTPases by the virtue of functioning as guanine nucleotide exchange factors (GEFs). In vertebrates, four RasGRP family members have been described. RasGRP-1 through -4 share many structural domains but there are also subtle differences between each of the different family members. Whereas SOS RasGEFs are ubiquitously expressed, RasGRP proteins are expressed in distinct patterns, such as in different cells of the hematopoietic system and in the brain. Most studies have concentrated on the role of RasGRP proteins in the development and function of immune cell types because of the predominant RasGRP expression profiles in these cells and the immune phenotypes of mice deficient for Rasgrp genes. However, more recent studies demonstrate that RasGRPs also play an important role in tumorigenesis. Examples are skin- and hematological- cancers but also solid malignancies such as melanoma or prostate cancer. These novel studies bring up many new and unanswered questions related to the molecular mechanism of RasGRP-driven oncogenesis, such as new receptor systems that RasGRP appears to respond to as well as regulatory mechanisms for RasGRP expression that appear to be perturbed in these cancers. Here we will review some of the known aspects of RasGRP biology in lymphocytes and will discuss the exciting new notion that RasGRP Ras exchange factors play a role in oncogenesis downstream of various growth factor receptors.  相似文献   

14.
Pseudomonas aeruginosa exoenzyme S double ADP-ribosylates Ras at Arg(41) and Arg(128). Since Arg(41) is adjacent to the switch 1 region of Ras, ADP-ribosylation could interfere with Ras-mediated signal transduction via several mechanisms, including interaction with Raf, or guanine nucleotide exchange factor-stimulated or intrinsic nucleotide exchange. Initial experiments showed that ADP-ribosylated Ras (ADP-r-Ras) and unmodified Ras (Ras) interacted with Raf with equal efficiencies, indicating that ADP-ribosylation did not interfere with Ras-Raf interactions. While ADP-r-Ras and Ras possessed equivalent intrinsic nucleotide exchange rates, guanine nucleotide exchange factor (Cdc25) stimulated the nucleotide exchange of ADP-r-Ras at a 3-fold slower rate than Ras. ADP-r-Ras did not affect the nucleotide exchange of Ras, indicating that the ADP-ribosylation of Ras was not a dominant negative phenotype. Ras-R41K and ADP-r-Ras R41K possessed similar exchange rates as Ras, indicating that ADP-ribosylation at Arg(128) did not inhibit Cdc25-stimulated nucleotide exchange. Consistent with the slower nucleotide exchange rate of ADP-r-Ras as compared with Ras, ADP-r-Ras bound its guanine nucleotide exchange factor (Cdc25) less efficiently than Ras in direct binding experiments. Together, these data indicate that ADP-ribosylation of Ras at Arg(41) disrupts Ras-Cdc25 interactions, which inhibits the rate-limiting step in Ras signal transduction, the activation of Ras by its guanine nucleotide exchange factor.  相似文献   

15.
A novel spectrophotometric method to study the kinetics of the guanine nucleotide exchange factors-catalyzed reactions is presented. The method incorporates two coupling enzyme systems: (a). GTPase-activating protein which stimulates the intrinsic GTP hydrolysis reaction of small GTPases and (b). purine nucleotide phosphorylase and its chromophoric substrate, 7-methyl-6-thioguanosine, for quantitation of the resultant inorganic phosphate. The continuous coupled enzyme system was used for characterization of the interactions between the small GTPase RhoA and its guanine nucleotide exchange factors, Lbc and Dbl. Kinetic parameters obtained here show that there is no significant difference in kinetic mechanism of these GEFs in interaction with RhoA. The Michaelis-Menten constants were determined to be around 1micro M, and the rate constants k(cat) were around 0.1s(-1).  相似文献   

16.
Heo J  Campbell SL 《Biochemistry》2004,43(8):2314-2322
Nitric oxide (NO), a highly reactive redox molecule, can react with protein thiols and protein metal centers to regulate a multitude of physiological processes. NO has been shown to promote guanine nucleotide exchange on the critical cellular signaling protein p21Ras (Ras) by S-nitrosylation of a redox-active thiol group (Cys(118)). This increases cellular Ras-GTP levels in vivo, leading to activation of downstream signaling pathways. Yet the process by which this occurs is not clear. Although several feasible mechanisms for protein S-nitrosylation with NO and NO donating have been proposed, results obtained from our studies suggest that Ras can be S-nitrosylated by direct reaction of Cys(118) with nitrogen dioxide (*NO(2)), a reaction product of NO with O(2), via a Ras thiyl-radical intermediate (Ras-S*). Results from our studies also indicate that Ras Cys(118) can be S-nitrosylated by direct reaction of Cys(118) with a glutathionyl radical (GS*), a reaction product derived from homolytic cleavage of S-nitrosoglutathione (GSNO). Moreover, we present evidence that reaction of GS* with Ras generates a Ras-S* intermediate during GSNO-mediated Ras S-nitrosylation. The Ras-S(*) radical intermediate formed from reaction of the Ras thiol with either *NO(2) or GS*, in turn, reacts with NO to complete Ras S-nitrosylation. NO and GSNO modulate Ras activity by promoting guanine nucleotide dissociation from Ras. Our results suggest that formation of the Ras radical intermediate, Ras-S*, may perturb interactions between Ras and its guanine nucleotide substrate, resulting in enhancement of guanine nucleotide dissociation from Ras.  相似文献   

17.
ric-8 (resistance to inhibitors of cholinesterase 8) genes have positive roles in variegated G protein signaling pathways, including Gα(q) and Gα(s) regulation of neurotransmission, Gα(i)-dependent mitotic spindle positioning during (asymmetric) cell division, and Gα(olf)-dependent odorant receptor signaling. Mammalian Ric-8 activities are partitioned between two genes, ric-8A and ric-8B. Ric-8A is a guanine nucleotide exchange factor (GEF) for Gα(i)/α(q)/α(12/13) subunits. Ric-8B potentiated G(s) signaling presumably as a Gα(s)-class GEF activator, but no demonstration has shown Ric-8B GEF activity. Here, two Ric-8B isoforms were purified and found to be Gα subunit GDP release factor/GEFs. In HeLa cells, full-length Ric-8B (Ric-8BFL) bound endogenously expressed Gα(s) and lesser amounts of Gα(q) and Gα(13). Ric-8BFL stimulated guanosine 5'-3-O-(thio)triphosphate (GTPγS) binding to these subunits and Gα(olf), whereas the Ric-8BΔ9 isoform stimulated Gα(s short) GTPγS binding only. Michaelis-Menten experiments showed that Ric-8BFL elevated the V(max) of Gα(s) steady state GTP hydrolysis and the apparent K(m) values of GTP binding to Gα(s) from ~385 nm to an estimated value of ~42 μM. Directionality of the Ric-8BFL-catalyzed Gα(s) exchange reaction was GTP-dependent. At sub-K(m) GTP, Ric-BFL was inhibitory to exchange despite being a rapid GDP release accelerator. Ric-8BFL binds nucleotide-free Gα(s) tightly, and near-K(m) GTP levels were required to dissociate the Ric-8B·Gα nucleotide-free intermediate to release free Ric-8B and Gα-GTP. Ric-8BFL-catalyzed nucleotide exchange probably proceeds in the forward direction to produce Gα-GTP in cells.  相似文献   

18.
The biochemical role of guanine nucleotide exchange factors (GEFs) in catalyzing small GTPase GDP-GTP exchange is thought to be twofold: stimulation of GDP dissociation and stabilization of a nucleotide-free GTPase intermediate. Here we report that TrioN, a Dbl family GEF, activates Rac1 by facilitating GTP binding to, as well as stimulating GDP dissociation from, Rac1. The TrioN-catalyzed GDP dissociation is dependent upon the structural nature and the concentration of free nucleotide, and nucleotide binding serves as the rate-limiting step of the GEF reaction. The TrioN-stimulated nucleotide exchange may undergo a novel two nucleotide-one G-protein intermediate involving two cryptic subsites on Rac1 induced by the GEF, with one subsite contributing to the recognition of the beta/gamma phosphates of the incoming GTP and another to the binding of the guanine base of the leaving GDP. We propose that the Rac GEF reaction may proceed by competitive displacement of bound GDP by GTP through a transient intermediate of GEF-[GTP-Rac-GDP].  相似文献   

19.
Polypeptide chain initiation in mammalian systems is regulated at the level of the guanine nucleotide exchange factor (GEF). This multisubunit protein catalyzes the exchange of GDP bound to eukaryotic initiation factor 2 (eIF-2) for GTP. Although various models have been proposed for its mode of action, the exact sequence of events involved in nucleotide exchange is still uncertain. We have studied this reaction by three different experimental techniques: (a) membrane filtration assays to measure the release of [3H]GDP from the eIF-2.[3H]GDP binary complex, (b) changes in the steady-state polarization of fluorescamine-GDP during the nucleotide exchange reaction, and (c) sucrose gradient analysis of the total reaction. The results obtained do not support the reaction as written: eIF-2.GDP + GEF in equilibrium eIF-2.GEF + GDP. The addition of GEF alone does not result in the displacement of eIF-2-bound GDP. The release of bound GDP is dependent on the presence of both GTP and GEF, and this argues against the possibility of a substituted enzyme (ping-pong) mechanism for the guanine nucleotide exchange reaction. An important finding of the present study is the observation that GTP binds to GEF. The Kd value of 4 microM for GTP was estimated (a) by the extent of quenching of tryptophan fluorescence of GEF in the presence of GTP and (b) by the binding of [3H]GTP to GEF as measured on nitrocellulose membranes. The GEF-dependent release of eIF-2-bound GDP was studied at several constant concentrations of one substrate (GTP or eIF-2.GDP) while varying the second substrate concentration, and the results were then plotted according to the Lineweaver-Burk method. Taken together, the results of GTP and eIF-2.GDP binding to GEF and the pattern of the double-reciprocal plots strongly suggest that the guanine nucleotide exchange reaction follows a sequential mechanism.  相似文献   

20.
The kinetics of the heterologous exchange of GDP bound to EF-Tu by free GTP catalysed by EF-Ts have been analysed with a view to correlating results obtainable with different computational procedures. The affinity of EF-Ts for EF-Tu.GTP was found to be somewhat less than previously proposed by Romero et al. (Biochemistry 260, 6167:1985) though still greater than for EF-Tu.GDP. There is a close interrelationship between the constants for the binding of GTP to EF-Tu.EF-Ts and of EF-Ts to EF-Tu.GTP. The declining fractional rate of exchange observed by Romero et al. during displacement of GDP by GTP appears to be dependent on the ratio of the rate constants (k-1 + k-2)k4/k1k-2 as defined in the text, not on that of K4/K1 as they proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号