首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
The dermal compartment of skin is primarily composed of collagen‐rich extracellular matrix (ECM), which is produced by dermal fibroblasts. In Young skin, fibroblasts attach to the ECM through integrins. During ageing, fragmentation of the dermal ECM limits fibroblast attachment. This reduced attachment is associated with decreased collagen production, a major cause of skin thinning and fragility, in the elderly. Fibroblast attachment promotes assembly of the cellular actin cytoskeleton, which generates mechanical forces needed for structural support. The mechanism(s) linking reduced assembly of the actin cytoskeleton to decreased collagen production remains unclear. Here, we report that disassembly of the actin cytoskeleton results in impairment of TGF‐β pathway, which controls collagen production, in dermal fibroblasts. Cytoskeleton disassembly rapidly down‐regulates TGF‐β type II receptor (TβRII) levels. This down‐regulation leads to reduced activation of downstream effectors Smad2/Smad3 and CCN2, resulting in decreased collagen production. These responses are fully reversible; restoration of actin cytoskeleton assembly up‐regulates TβRII, Smad2/Smad3, CCN2 and collagen expression. Finally, actin cytoskeleton‐dependent reduction of TβRII is mediated by induction of microRNA 21, a potent inhibitor of TβRII protein expression. Our findings reveal a novel mechanism that links actin cytoskeleton assembly and collagen expression in dermal fibroblasts. This mechanism likely contributes to loss of TβRII and collagen production, which are observed in aged human skin.  相似文献   

2.
Transforming growth factor β (TGF‐β) is a master regulator of autocrine and paracrine signaling pathways between a tumor and its microenvironment. Decreased expression of TGF‐β type II receptor (TβRII) in stromal cells is associated with increased tumor metastasis and shorter patient survival. In this study, SILAC quantitative proteomics was used to identify differentially externalized proteins in the conditioned media from the mammary fibroblasts with or without intact TβRII. Over 1000 proteins were identified and their relative differential levels were quantified. Immunoassays were used to further validate identification and quantification of the proteomic results. Differential expression was detected for various extracellular proteins, including proteases and their inhibitors, growth factors, cytokines, and extracellular matrix proteins. CXCL10, a cytokine found to be up‐regulated in the TβRII knockout mammary fibroblasts, is shown to directly stimulate breast tumor cell proliferation and migration. Overall, this study revealed hundreds of specific extracellular protein changes modulated by deletion of TβRII in mammary fibroblasts, which may play important roles in the tumor microenvironment. These results warrant further investigation into the effects of inhibiting the TGF‐β signaling pathway in fibroblasts because systemic inhibition of TGF‐β signaling pathways is being considered as a potential cancer therapy.  相似文献   

3.
Connective tissue growth factor (CTGF/CCN2) is a matricellular protein induced by transforming growth factor (TGF)‐β and intimately involved with tissue repair and overexpressed in various fibrotic conditions. We previously showed that keratinocytes in vitro downregulate TGF‐β‐induced expression of CTGF in fibroblasts by an interleukin (IL)‐1 α‐dependent mechanism. Here, we investigated further the mechanisms of this downregulation by both IL‐1α and β. Human dermal fibroblasts and NIH 3T3 cells were treated with IL‐1α or β in presence or absence of TGF‐β1. IL‐1 suppressed basal and TGF‐β‐induced CTGF mRNA and protein expression. IL‐1α and β inhibited TGF‐β‐stimulated CTGF promoter activity, and the activity of a synthetic minimal promoter containing Smad 3‐binding CAGA elements. Furthermore, IL‐1α and β inhibited TGF‐β‐stimulated Smad 3 phosphorylation, possibly linked to an observed increase in Smad 7 mRNA expression. In addition, RNA interference suggested that TGF‐β activated kinase1 (TAK1) is necessary for IL‐1 inhibition of TGF‐β‐stimulated CTGF expression. These results add to the understanding of how the expression of CTGF in human dermal fibroblasts is regulated, which in turn may have implications for the pathogenesis of fibrotic conditions involving the skin. J. Cell. Biochem. 110: 1226–1233, 2010. Published 2010 Wiley‐Liss, Inc.  相似文献   

4.
5.
Hyperosmolarity plays an essential role in the pathogenesis of diabetic tubular fibrosis. However, the mechanism of the involvement of hyperosmolarity remains unclear. In this study, mannitol was used to evaluate the effects of hyperosmolarity on a renal distal tubule cell line (MDCK). We investigated transforming growth factor‐β receptors and their downstream fibrogenic signal proteins. We show that hyperosmolarity significantly enhances the susceptibility to exogenous transforming growth factor (TGF)‐β1, as mannitol (27.5 mM) significantly enhanced the TGF‐β1‐induced increase in fibronectin levels compared with control experiments (5.5 mM). Specifically, hyperosmolarity induced tyrosine phosphorylation on TGF‐β RII at 336 residues in a time (0–24 h) and dose (5.5–38.5 mM) dependent manner. In addition, hyperosmolarity increased the level of TGF‐β RI in a dose‐ and time‐course dependent manner. These observations may be closely related to decreased catabolism of TGF‐β RI. Hyperosmolarity significantly downregulated the expression of an inhibitory Smad (Smad7), decreased the level of Smurf 1, and reduced ubiquitination of TGF‐β RI. In addition, through the use of cycloheximide and the proteasome inhibitor MG132, we showed that hyperosmolarity significantly increased the half‐life and inhibited the protein level of TGF‐β RI by polyubiquitination and proteasomal degradation. Taken together, our data suggest that hyperosmolarity enhances cellular susceptibility to renal tubular fibrosis by activating the Smad7 pathway and increasing the stability of type I TGF‐β receptors by retarding proteasomal degradation of TGF‐β RI. This study clarifies the mechanism underlying hyperosmotic‐induced renal fibrosis in renal distal tubule cells. J. Cell. Biochem. 109: 663–671, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

6.
Accumulating evidence indicates that there is extensive crosstalk between integrins and TGF‐β signalling. TGF‐β affects integrin‐mediated cell adhesion and migration by regulating the expression of integrins, their ligands and integrin‐associated proteins. Conversely, several integrins directly control TGF‐β activation. In addition, a number of integrins can interfere with both Smad‐dependent and Smad‐independent TGF‐β signalling in different ways, including the regulation of the expression of TGF‐β signalling pathway components, the physical association of integrins with TGF‐β receptors and the modulation of downstream effectors. Reciprocal TGF‐β–integrin signalling is implicated in normal physiology, as well as in a variety of pathological processes including systemic sclerosis, idiopathic pulmonary fibrosis, chronic obstructive pulmonary disease and cancer; thus, integrins could provide attractive therapeutic targets to interfere with TGF‐β signalling in these processes.  相似文献   

7.
8.
9.
Accumulating evidence indicates that activated microglia contribute to the neuropathology involved in many neurodegenerative diseases and after traumatic injury to the CNS. The cytokine transforming growth factor‐beta 1 (TGF‐β1), a potent deactivator of microglia, should have the potential to reduce microglial‐mediated neurodegeneration. It is therefore perplexing that high levels of TGF‐β1 are found in conditions where microglia are chronically activated. We hypothesized that TGF‐β1 signaling is suppressed in activated microglia. We therefore activated primary rat microglia with lipopolysaccharide (LPS) and determined the expression of proteins important to TGF‐β1 signaling. We found that LPS treatment decreased the expression of the TGF‐β receptors, TβR1 and TβR2, and reduced protein levels of Smad2, a key mediator of TGF‐β signaling. LPS treatment also antagonized the ability of TGF‐β to suppress expression of pro‐inflammatory cytokines and to induce microglial cell death. LPS treatment similarly inhibited the ability of the TGF‐β related cytokine, Activin‐A, to down‐regulate expression of pro‐inflammatory cytokines and to induce microglial cell death. Together, these data suggest that microglial activators may oppose the actions of TGF‐β1, ensuring continued microglial activation and survival that eventually may contribute to the neurodegeneration prevalent in chronic neuroinflammatory conditions.

  相似文献   


10.
High‐mobility group box 1 (HMGB1) has been reported to attenuate ventricular remodeling, but its mechanism remains mostly unresolved. Transforming growth factor‐beta (TGF‐β) is a crucial mediator in the pathogenesis of post‐infarction remodeling. Our study focused on the effects of HMGB1 on ventricular remodeling, and explored whether or not these effects were depended upon the TGF‐β signaling pathway. Rats underwent coronary artery ligation. An intramyocardium injection of phosphate buffered saline (PBS) with or without HMGB1 was administered 3 weeks after myocardial infarction (MI). At 4 weeks after the treatment, HMGB1 significantly increased the left ventricular ejection fraction (LVEF) (P < 0.05), decreased the left ventricular end diastolic dimension (LVEDD; P < 0.05), left ventricular end systolic dimension (LVESD) (P < 0.05) and the infarct size (P < 0.05) compared with control group. The expressions of collagen I, collagen III, and tissue inhibitor of metalloproteinase 2 (TIMP2) were also decreased, while the matrix metalloproteinases 2 (MMP2) and MMP9 expressions were upregulated by HMGB1 injection (P < 0.05) compared with control group. No effect on TIMP3 was observed. Furthermore, TGF‐β1 and phosphor‐Smad2 (p‐Smad2) were significantly suppressed and Smad7 was increased in HMGB1‐treated group (P < 0.05) compared with control group, no effects on p‐Smad3 and p‐p38 were observed. HMGB1 also upregulated Smad 7 expression and decreased the level of collagen I on cardiac fibroblasts (P < 0.05). Silencing of Smad7 gene by small interfering RNA abolished the fibrogenic effects of HMGB1 on cardiac fibroblasts (P < 0.05). These finding suggested that HMGB1 injection modulated ventricular remodeling may function through the possible inhibition of TGF‐β/Smad signaling pathway. J. Cell. Biochem. 114: 1634–1641, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

11.
Proliferative vitreoretinopathy (PVR) is a blinding eye disease. Epithelial‐mesenchymal transition (EMT) of RPE cells plays an important role in the pathogenesis of PVR. In the current study, we sought to investigate the role of the methyl‐CpG‐binding protein 2 (MeCP2), especially P‐MeCP2‐421 in the pathogenesis of PVR. The expressions of P‐MeCP2‐421, P‐MeCP2‐80, PPAR‐γ and the double labelling of P‐MeCP2‐421 with α‐SMA, cytokeratin, TGF‐β and PPAR‐γ in human PVR membranes were analysed by immunohistochemistry. The effect of knocking down MeCP2 using siRNA on the expressions of α‐SMA, phospho‐Smad2/3, collagen I, fibronectin and PPAR‐γ; the expression of α‐SMA stimulated by recombinant MeCP2 in ARPE‐19; and the effect of TGF‐β and 5‐AZA treatment on PPAR‐γ expression were analysed by Western blot. Chromatin immunoprecipitation was used to determine the binding of MeCP2 to TGF‐β. Our results showed that P‐MeCP2‐421 was highly expressed in PVR membranes and was double labelled with α‐SMA, cytokeratin and TGF‐β, knocking down MeCP2 inhibited the activation of Smad2/3 and the expression of collagen I and fibronectin induced by TGF‐β. TGF‐β inhibited the expression of PPAR‐γ, silence of MeCP2 by siRNA or using MeCP2 inhibitor (5‐AZA) increased the expression of PPAR‐γ. α‐SMA was up‐regulated by the treatment of recombinant MeCP2. Importantly, we found that MeCP2 bound to TGF‐β as demonstrated by Chip assay. The results suggest that MeCP2 especially P‐MeCP2‐421 may play a significant role in the pathogenesis of PVR and targeting MeCP2 may be a potential therapeutic approach for the treatment of PVR.  相似文献   

12.
Receptor‐interacting serine/threonine kinase 4 (RIPK4) and transforming growth factor‐β 1 (TGF‐β1) play critical roles in the development and maintenance of the epidermis. A negative correlation between the expression patterns of RIPK4 and TGF‐β signaling during epidermal homeostasis‐related events and suppression of RIPK4 expression by TGF‐β1 in keratinocyte cell lines suggest the presence of a negative regulatory loop between the two factors. So far, RIPK4 has been shown to regulate nuclear factor‐κB (NF‐κB), protein kinase C (PKC), wingless‐type MMTV integration site family (Wnt), and (mitogen‐activated protein kinase) MAPK signaling pathways. In this study, we examined the effect of RIPK4 on the canonical Smad‐mediated TGF‐β1 signaling pathway by using the immortalized human keratinocyte HaCaT cell line. According to our results, RIPK4 inhibits intracellular Smad‐mediated TGF‐β1 signaling events through suppression of TGF‐β1‐induced Smad2/3 phosphorylation, which is reflected in the upcoming intracellular events including Smad2/3‐Smad4 interaction, nuclear localization, and TGF‐β1‐induced gene expression. Moreover, the kinase activity of RIPK4 is required for this process. The in vitro wound‐scratch assay demonstrated that RIPK4 suppressed TGF‐β1‐mediated wound healing through blocking TGF‐β1‐induced cell migration. In conclusion, our results showed the antagonistic effect of RIPK4 on TGF‐β1 signaling in keratinocytes for the first time and have the potential to contribute to the understanding and treatment of skin diseases associated with aberrant TGF‐β1 signaling.  相似文献   

13.
Transforming growth factor (TGF)‐β1 is a known factor in angiotensin II (Ang II)‐mediated cardiac fibrosis after myocardial infarction (MI). Hypoxia inducible factor‐1 (Hif‐1α) was recently demonstrated to involve in the tissue fibrosis and influenced by Ang II. However, whether Hif‐1α contributed to the Ang II‐mediated cardiac fibrosis after MI, and whether interaction or synergetic roles between Hif‐1α and TGF‐β pathways existed in the process was unclear. In vitro, cardiac cells were incubated under hypoxia or Ang II to mimic ischaemia. In vivo, valsartan was intravenously injected into Sprague–Dawley rats with MI daily for 1 week; saline and hydralazine (another anti‐hypertensive agent like valsartan) was used as control. The fibrosis‐related proteins were detected by Western blotting. Cardiac structure and function were assessed with multimodality methods. We demonstrated in vitro that hypoxia would induce the up‐regulation of Ang II, TGF‐β/Smad and Hif‐1α, which further induced collagen accumulation. By blocking with valsartan, a blocker of Ang II type I (AT1) receptor, we confirmed that the up‐regulation of TGF‐β/Smad and Hif‐1α was through the Ang II‐mediated pathway. By administering TGF‐β or dimethyloxalylglycine, we determined that both TGF‐β/Smad and Hif‐1α contributed to Ang II‐mediated collagen accumulation and a synergetic effect between them was observed. Consistent with in vitro results, valsartan significantly attenuated the expression of TGF‐β/Smad, Hif‐1α and fibrosis‐related protein in rats after MI. Heart function, infarcted size, wall thickness as well as myocardial vascularization of ischaemic hearts were also significantly improved by valsartan compared with saline and hydralazine. Our study may provide novel insights into the mechanisms of Ang II‐induced cardiac fibrosis as well as into the cardiac protection of valsartan.  相似文献   

14.
15.
Signaling by the transforming growth factor‐β (TGF‐β) is an essential pathway regulating a variety of cellular events. TGF‐β is produced as a latent protein complex and is required to be activated before activating the receptor. The mechanical force at the cell surface is believed to be a mechanism for latent TGF‐β activation. Using β‐actin null mouse embryonic fibroblasts as a model, in which actin cytoskeleton and cell‐surface biophysical features are dramatically altered, we reveal increased TGF‐β1 activation and the upregulation of TGF‐β target genes. In β‐actin null cells, we show evidence that the enhanced TGF‐β signaling relies on the active utilization of latent TGF‐β1 in the cell culture medium. TGF‐β signaling activation contributes to the elevated reactive oxygen species production, which is likely mediated by the upregulation of Nox4. The previously observed myofibroblast phenotype of β‐actin null cells is inhibited by TGF‐β signaling inhibition, while the expression of actin cytoskeleton genes and angiogenic phenotype are not affected. Together, our study shows a scenario that the alteration of the actin cytoskeleton and the consequent changes in cellular biophysical features lead to changes in cell signaling process such as TGF‐β activation, which in turn contributes to the enhanced myofibroblast phenotype.  相似文献   

16.
17.
Acetyl‐11‐keto‐β‐boswellic acid (AKBA), an active triterpenoid compound from the extract of Boswellia serrate, has been reported previously in our group to alleviate fibrosis in vascular remodelling. This study aimed to elucidate the in vivo and in vitro efficacy and mechanism of AKBA in renal interstitial fibrosis. The experimental renal fibrosis was produced in C57BL/6 mice via unilateral ureteral obstruction (UUO). Hypoxia‐induced HK‐2 cells were used to imitate the pathological process of renal fibrosis in vitro. Results showed that the treatment of AKBA significantly alleviated UUO‐induced impairment of renal function and improved the renal fibrosis by decreasing the expression of TGF‐β1, α‐SMA, collagen I and collagen IV in UUO kidneys. In hypoxia‐induced HK‐2 cells, AKBA displayed remarkable cell protective effects and anti‐fibrotic properties by increasing the cell viability, decreasing the lactate dehydrogenase (LDH) release and inhibiting fibrotic factor expression. Moreover, in obstructed kidneys and HK‐2 cells, AKBA markedly down‐regulated the expression of TGFβ‐RI, TGFβ‐RII, phosphorylated‐Smad2/3 (p‐Smad2/3) and Smad4 in a dose‐dependent fashion while up‐regulated the expression of Klotho and Smad7 in the same manner. In addition, the effects of AKBA on the Klotho/TGF‐β/Smad signalling were reversed by transfecting with siRNA‐Klotho in HK‐2 cells. In conclusion, our findings provide evidence that AKBA can effectively protect kidney against interstitial fibrosis, and this renoprotective effect involves the Klotho/TGF‐β/Smad signalling pathway. Therefore, AKBA could be considered as a promising candidate drug for renal interstitial fibrosis.  相似文献   

18.
19.
Liver fibrosis is characterized by an exacerbated accumulation of deposition of the extracellular matrix (ECM), and the activation of hepatic stellate cells (HSC) plays a pivotal role in the development of liver fibrosis. Periostin has been shown to regulate cell adhesion, proliferation, migration and apoptosis; however, the involvement of periostin and its role in transforming growth factor (TGF)‐β1‐induced HSC activation remains unclear. We used RT‐PCR and Western blot to evaluate the expression level of periostin in hepatic fibrosis tissues and HSCs, respectively. Cell proliferation was determined using the Cell Proliferation ELISA BrdU kit, cell cycle was analysed by flow cytometry. The expression of α‐smooth muscle actin (α‐SMA), collagen I, TGF‐β1, p‐Smad2 and p‐Smad3 were determined by western blot. Our study found that periostin was up‐regulated in liver fibrotic tissues and activated HSCs. In addition, siRNA‐periostin suppressed TGF‐β1‐induced HSC proliferation. The HSC transfected with siRNA‐periostin significantly inhibited TGF‐β1‐induced expression levels of α‐SMA and collagen I. Furthermore, TGF‐β1 stimulated the expression of periostin, and siRNA‐periostin attenuated TGF‐β1‐induced Smad2/3 activation in HSCs. These results suggest that periostin may function as a novel regulator to modulate HSC activation, potentially by promoting the TGF‐β1/Smad signalling pathway, and propose a strategy to target periostin for the treatment of liver fibrosis.  相似文献   

20.
Pulmonary fibrosis (PF), characterized by the destruction of lung tissue architecture and the abnormal deposition of extracellular matrix (ECM) proteins, currently has no satisfactory treatment. The role of microRNA (miR)‐21 in PF has been reported; the current study attempted to investigate a novel molecular mechanism by which miR‐21 exerted its function. Consistent with previous studies, miR‐21 inhibition reduced ECM protein levels in bleomycin (BLM)‐induced mouse model of PF. In human pulmonary fibroblast (IMR‐90), miR‐21 inhibition reduced transforming growth factor β1 (TGFβ1)–induced ECM protein expression. Regarding a novel molecular mechanism, TGFβ1 combined with TGFβ1 receptor 1 (TGFβ1RI) to activate SMAD2/3, promote SMAD4 nucleus transformation, and thus regulate miR‐21 expression and ECM. SMAD3 and SMADs complex could bind to the promoter region of miR‐21 to promote miR‐21 expression. In conclusion, miR‐21 exerts promotive effects on BLM‐induced PF and TGFβ1‐induced ECM in IMR‐90; TGFβ1 combines with TGFβ1RI to activate SMAD2/3, promote SMAD4 nucleus transformation, promote miR‐21 expression, and thus to promote BLM‐induced PF and TGFβ1‐induced ECM in IMR‐90 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号