首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A survey of grapevine viruses present in the region of Calabria (southern Italy) was carried out, and the sanitary selection was conducted on various indigenous varieties. Serological (ELISA) and molecular (multiplex RT‐PCR) tests were used to detect the viruses included in the Italian certification programme: Arabis mosaic virus (ArMV), Grapevine fanleaf virus (GFLV), Grapevine leafroll associated virus 1 (GLRaV‐1), Grapevine leafroll associated virus 2 (GLRaV‐2), Grapevine leafroll associated virus 3 (GLRaV‐3), Grapevine virus A (GVA), Grapevine virus B (GVB) and Grapevine fleck virus (GFkV). The frequency with which the above viruses have been detected was 37.4, 32.6, 12.8, 7.7, 7.3, 1.9 and 0.3%, respectively, for GVA, GLRaV‐3, GFLV, GFKV, GLRaV‐1, GLRaV‐2 and GVB. ArMV was never found. The sanitary selection allowed for the detection of 6 putative clones of ‘Arvino’, 2 of ‘Magliocco dolce’ and 2 of the rootstock ‘17–37’ free of the above‐mentioned viruses. The necessary process for the commercialization of these clones as ‘certified’ propagation material was accomplished, and their official approval by the Italian Ministry of Agriculture is currently in progress.  相似文献   

2.
Surveys were made in the main grape growing region (Southeast Anatolia) of Turkey for the occurrence of Grapevine leafroll‐associated virus‐5 (GLRaV‐5). Plant samples with typical leafroll symptoms and mealybugs, Planococcus ficus (Signoret) were used for assessing the occurrence of GLRaV‐5 by RT‐PCR. A 272 bp band representing GLRaV‐5 infection was successfully detected in plants and mealybugs in some vineyards of the Southeast Anatolia region and the virus is the first time reported in Turkish vineyards.  相似文献   

3.
During a 3‐year study, grapevines from 23 vineyards in Poland were surveyed for virus diseases and tested to determine the prevalence of the most economically important viruses by RT‐PCR. The rate of positive samples was 2.2% for grapevine leafroll‐associated virus 1 (GLRaV‐1), 1.9% for grapevine leafroll‐associated virus 2 (GLRaV‐2), 1.5% grapevine leafroll‐associated virus 3 (GLRaV‐3), 1.9% for grapevine virus A (GVA), 0.2% for grapevine virus B (GVB), 0.2% for grapevine virus E (GVE), 0.65% for grapevine fanleaf virus (GFLV), 20.4% for grapevine fleck virus (GFkV) and 71.9% for grapevine rupestris stem pitting‐associated virus (GRSPaV). These viruses were found to occur as single or mixed infections of different combinations in individual grapevines. The overall viral infection rate in the surveyed grapevines was 82.6%. GRSPaV is the most widely distributed virus of all the viruses currently detected in the region. DNA sequencing confirmed the identification of the viruses in selected samples, and analysis indicated that the Polish isolates shared a close molecular identity with the corresponding isolates in GenBank. To our knowledge, this is the first detection of GLRaV‐1, ‐2, ‐3, GVA, GVB, GVE, GFLV, GFkV and GRSPaV in Poland.  相似文献   

4.
5.
Grapevines in central Anatolia region of Turkey were surveyed for the prevalence of grapevine leafroll viruses. The field study and collection of samples were conducted in nine major grapevine‐growing areas. Samples collected from 622 vines were tested for Grapevine leafroll‐associated virus 1, 2, 3 and 7 (GLRaV‐1, ‐2, ‐3 and ‐7). According to diagnostic tests and surveys, 27 of 41 cultivars and 95 of 622 samples (15.27%) were found to be infected at least one virus. GLRaV‐1 (8.36%) was found to be the most frequently encountered virus associated with leafroll disease of grapes, followed by GLRaV‐3 (5.78%), GLRAV‐7 (3.86%) and GLRAV‐2 (2.41%).  相似文献   

6.
Grapevine leafroll disease is one of the most important viral diseases of grapevine (Vitis vinifera) worldwide. Grapevine leafroll‐associated virus 3 (GLRaV‐3) is the most predominant virus species causing this disease. Therefore, it is important to identify GLRaV‐3 effects, especially in plants which do not systematically show visual symptoms. In this study, effects of GLRaV‐3 on grapevine physiology were evaluated in asymptomatic plants of Malvasía de Banyalbufar and Cabernet Sauvignon cvs. Absolute virus quantification was performed in order to determine the level of infection of the treatment. The net carbon dioxide (CO2) assimilation (AN) and electron transport rate (Jflux) were the main parameters affected by the virus. The AN reduction in infected plants was attributed to restrictions in CO2 diffusion caused by anatomical leaf changes and a reduction of Rubisco activity. Those effects were more evident in Malvasia de Banyalbufar plants. The reduction of AN leads to a decrease in the total oxygen uptake rate by the activity of the cytochrome oxidase pathway, producing slight differences in plant growth. Therefore, even though no symptoms were expressed in the plants, the effects of the virus compromised the plant vital processes, showing the importance of early detection of the virus in order to fight against the infection.  相似文献   

7.
To evaluate the genetic diversity of Grapevine virus A (GVA), the genomic region encompassing the partial capsid protein gene and ORF5 was analysed from 10 GVA isolates. Phylogenetic study showed a broad variability of the GVA isolates recovered from a limited geographical area (Slovakia and Czech Republic) and further confirmed the absence of geographical structuration within GVA. Moreover, assessment of structure and intra‐isolate variability revealed that grapevine samples infected with SK13 and SK29 isolates have harboured a population of different sequence variants.  相似文献   

8.
9.
10.
The effects of different nitrogen fertilization regimes on body size and selected life‐history parameters (development time, survival, fecundity and fertility) of the vine mealybug, Planococcus ficus (Signoret) (Hemiptera: Pseudococcidae), were investigated on potted grapevines under laboratory and screenhouse conditions. In both trials, five groups of four grapevines each were supplied with 0, 0.25, 0.5, 1.0 or 2.0 g/l of ammonium nitrate fertilizer for a month and then artificially infested with 200 first‐instar vine mealybugs (24 h of age). The concentration of nitrogen on grape leaves was measured during both experiments by a SPAD chlorophyll metre, showing statistical differences among treatments. The nitrogen fertilization significantly affected the investigated P. ficus parameters, providing consistent results in both laboratory and screenhouse trials. The vine mealybug females exhibited higher survival and fecundity, larger body size and lower development time on plants supplied with higher nitrogen fertilization rates. Survival, body size and fecundity of P. ficus were positively correlated with the leaf nitrogen concentration, whereas the development time was negatively correlated. Fertility did not vary significantly among treatments. Our results show that high nitrogen regimes increase the reproductive performance of P. ficus on grapevines and point out the importance of implementing balanced fertilization plans in grapevine IPM programs to reduce population densities and prevent insect outbreaks.  相似文献   

11.
Since their discovery, single‐domain antigen‐binding fragments of camelid‐derived heavy‐chain‐only antibodies, also known as nanobodies (Nbs), have proven to be of outstanding interest as therapeutics against human diseases and pathogens including viruses, but their use against phytopathogens remains limited. Many plant viruses including Grapevine fanleaf virus (GFLV), a nematode‐transmitted icosahedral virus and causal agent of fanleaf degenerative disease, have worldwide distribution and huge burden on crop yields representing billions of US dollars of losses annually, yet solutions to combat these viruses are often limited or inefficient. Here, we identified a Nb specific to GFLV that confers strong resistance to GFLV upon stable expression in the model plant Nicotiana benthamiana and also in grapevine rootstock, the natural host of the virus. We showed that resistance was effective against a broad range of GFLV isolates independently of the inoculation method including upon nematode transmission but not against its close relative, Arabis mosaic virus. We also demonstrated that virus neutralization occurs at an early step of the virus life cycle, prior to cell‐to‐cell movement. Our findings will not only be instrumental to confer resistance to GFLV in grapevine, but more generally they pave the way for the generation of novel antiviral strategies in plants based on Nbs.  相似文献   

12.
13.
Planococcus pacificus sp.n. is described from the South Pacific, Australia and South East Asia. P.citricus is synonymized with P.citri. A key and illustrations are given to separate the species discussed from each other and from the similar P.ficus group.  相似文献   

14.
The alignment of the complete genomes of genetic variants of Grapevine leafroll‐associated virus 3 (GLRaV‐3) representing phylogenetic groups I, II, III and VI revealed numerous regions with exceptionally high divergence between group I to III and group VI variants. Oligonucleotide primers universal for all the above groups of the virus were designed in conserved short stretches of sequences flanking the divergent regions in the helicase (Hel) and RNA‐dependent RNA polymerase (RdRP) domains of the replicase gene and the divergent copy of the capsid protein (dCP) gene. Cloning and sequencing of the 549‐bp RT‐PCR amplicon of the helicase domain from grapevine cv. Shiraz lead to the detection of a variant of GLRaV‐3, which shared only 69.6–74.1% nt similarity with other variants, including the recently reported, new, highly divergent variant, isolate 139. This was confirmed by the results of the analysis of 517‐bp amplicon of the HSP70 gene of GLRaV‐3 generated in RT‐nested PCR based on degenerate primers for the simultaneous amplification of members of the Closteroviridae family designed by Dovas and Katis (J Virol Methods, 109, 2003, 217). In this genomic region, the variant shares 72.3–78.7% nt similarity with other variants of GLRaV‐3. This previously unreported, new, highly divergent variant was provisionally named GTG10. From the alignment of the HSP70 sequences primers for the specific RT‐nested PCR amplification of the variant GTG10 and members of group VI, and specific simultaneous amplification of variants of groups I, II and III, were designed. The results obtained from brief testing of various grapevines using all these primers suggest a relatively limited presence of GTG10 variant in vineyards.  相似文献   

15.
Thiopurine prodrugs are antiviral chemicals used in medical therapy whose mechanisms of action are associated with inhibition of purine biosynthesis. In terms of plant chemotherapy, previous research of 6‐mercaptopurine (MP) administration in tobacco tissue culture infected by Tobacco mosaic virus (TMV) showed no inhibition of virus activity. Currently, not enough data exist to confirm thiopurine drug ineffectiveness against viruses in the plant kingdom. This paper presents a screening of MP, 6‐methylmercaptopurine riboside (MMPR), 6‐thioguanine (6‐TG) and 1‐amino‐6‐mercaptopurine (1A‐MP) against TMV and Cucumber mosaic virus (CMV) in in vitro tobacco explants and against Grapevine leafroll‐associated virus 3 (GLRaV 3) in in vitro grapevine explants. ELISA and RT‐PCR were used to evaluate antiviral activity. Higher toxicity levels of MP derivatives, compared to MP, were noted in tobacco and grapevine explants. 1A‐MP or 6‐TG treatment resulted CMV and GLRaV 3 virus‐eradicated explants as obtained with Inosine 5′‐monophosphate dehydrogenase inhibitors, whereas TMV was not eradicated by any of the studied drugs.  相似文献   

16.
Grapevine leafroll associated virus 2 (GLRaV 2) is one of the important components in the leafroll disease complex. The coat protein gene of GLRaV 2 was cloned into a protein expression vector pMAL‐c2x and the recombinant protein, consisting of the maltose binding protein (MBP) and GLRaV 2 coat protein (CP), was expressed in Escherichia coli. The recombinant MBP‐CP was used to raise a high quality antiserum. When used in Western blot analysis, the anti‐MBP‐CP antiserum produced specific reaction to the recombinant protein as well as to the viral coat protein of GLRaV 2. In Immunosorbent electron microscopy study, the anti‐MBP‐CP antibodies strongly decorated the GLRaV 2 virions. Using the newly developed antiserum, an indirect plate‐trapped antigen enzyme‐linked immunosorbent assay method was developed and successfully implemented for virus detection. A field survey was conducted to evaluate the virus infection status by GLRaV 2 and GLRaV 3 using antibodies developed against their respective recombinant coat proteins.  相似文献   

17.
The impact of mixed infection of grapevine leafroll‐associated virus 1 and 3 (GLRaV‐1&‐3) on physiological performance of the Portuguese grapevine variety ‘Touriga Nacional’ was evaluated during 3 years with the main purpose of understanding the drastic reduction in yield. Overall, gas exchange was negatively affected in leaves with these leafroll virus infections. Particularly at ripeness stage, the reduction in stomatal conductance (gs) was higher than in net CO2 assimilation rate (A), leading to higher intrinsic water use efficiency (A/gs) in infected leaves. However, the decrease in gs and A were not a consequence of the decrease in bulk water potential, as the water index/normalised difference vegetation index ratio suggested similar magnitude for both treatments. The maximum quantum efficiency of photosystem II was unaffected by GLRaV‐1&‐3, whereas quantum effective efficiency of PSII, apparent electron transport rate and photochemical quenching significantly decreased in infected leaves and these was paralleled by a significant increase of non‐photochemical quenching. Relative to carbon metabolism, the analyses of the net CO2 assimilation rate/photosynthetic photon flux density (A/PPFD) and net CO2 assimilation rate/internal CO2 concentration (A/Ci) curves revealed that virus infection had a negative effect on light saturated rate of CO2 fixation at high irradiances and carboxylation efficiency but, in contrast, apparent quantum yield of CO2 fixation was significantly higher. Meanwhile, the presence of GLRaV‐1&‐3 resulted in a marked decrease in photosynthetic pigments, soluble sugars and soluble proteins contents, while starch and anthocyanins were significantly improved. N, P, Ca, S and Fe leaf concentrations significantly decreased, while K, Mg, B, Cu, Zn and Mn were unaffected by these two leafroll virus species. Infected plants showed a significant decrease in yield, mainly due to a lower cluster weight. These results emphasised the important role of GLRaV‐1&‐3 as a biotic stress for the grapevine physiology and consequently to yield attributes.  相似文献   

18.
Grapevine leafroll‐associated virus 2 (GLRaV‐2) was detected by serological and molecular analyses in several grapevine accessions of different varieties from Italian, Greek, French and Brazilian vineyards in a 2001–2002 survey. In order to study the genetic variability among GLRaV‐2 isolates in the open reading frame (ORF) coding the coat protein (CP), heteroduplex mobility assays were performed on 17 isolates and six strains used as reference. Eight diverse GLRaV‐2 variants were identified among the infected grapevines tested. The most common variant was found in the majority of the samples characterized; it was indistinguishable from the reference strains from the Semillon and Pinot noir 95 accessions. GLRaV‐2 variants found in Italian cvs Negro amaro and Vermentino were identical to the reference strain from cv. Muscat de Samos (Greece). Three other GLRaV‐2 variants from Southern and Central Italy were different from all the reference strains. A grapevine accession from Tuscany was found to contain two diverse GLRaV‐2 variants. None of the variants tested sample identical to the American strain H4 or the reference strains from cvs Chasselas 8386 (Switzerland) or Alphonse Lavallée 224 (France); the latter three accessions were different from one another. The estimated nucleotide homology in CP gene among 23 GLRaV‐2 isolates was in some cases <88%.  相似文献   

19.
Vine mealybug, Planococcus ficus, is a major pest of grapevine, which is present in at least 39 countries. According to American Vineyard Foundation, P. ficus is in the top ranks among major insect-pests of grapevine. It is the ‘top priority concerns’ by grape growers and a ‘threat to the sustainability of wine industry’ demanding a ‘high priority research’. In Douro vineyards, it is considered as an occasional insect-pest; however, its importance is increasing in some localities. The present study investigates the occurrences of P. ficus-associated fungi. Vine mealybugs were observed in two of the four surveyed farms. Out of the 183 collected mealybugs, 58 were dead of which 25 had symptoms of mycosis and 13 were parasitised. Subculturing cadavers and subsequent pathogenicity test yielded 22 entomopathogenic fungi (EPF) including yeasts. The yeast Meyerozyma (=Pichia) guilliermondii, and the EPF Sarocladium kiliense and Purpureocillium lilacinum were the most abundant, i.e. representing 18.18% (N?=?4), 13.64% (N?=?3) and 13.64% (N?=?3) of the isolates, respectively. Considering biological affinities, fungal families Nectriaceae and Microascaceae had the most similar count-data profiles. To our knowledge, this work reports the first isolations of EPF from vine mealybug worldwide; and Pseudocosmospora rogersonii in Europe and as EPF worldwide. The mortality rate originated by mycoses on P. ficus was significantly higher than by its parasitoids, suggesting that fungi as P. ficus biocontrol agents are relatively more important than considered before. Overall, this report provides new insights into the development of mycoinsecticides and conservation biocontrol strategies for P. ficus pest management.  相似文献   

20.
Agrobacterium rhizogenes-mediated transformation was applied toVitis spp. andNicotiana spp. infected by different grapevine phloem-limited viruses (grapevine fleck virus, grapevine virus A, grapevine virus B) to obtain root cultures for virus purification. All plant species were successfully transformed, and several clones were established in liquid culture. Transformed grapevine roots contained as much virus as non transformed roots and more than leaves, as assessed by ELISA and thin sectioning. Likewise, transformed roots ofNicotiana benthamiana Domin. contained in average more GVA than leaves, especially those at the base and the top of the plant, whereas withNicotiana occidentalis wheel., GVB was apparently less concentrated than in leaves.Nicotiana root grew faster than those ofVitis. All viruses multiplied and persisted in root cultures, which were successfully used for purification. Virus yields were the same (GFkV and GVB) or higher (GVB) than those reported in the literature. Grapevine roots may prove useful for culturing and purifying other non-mechanically transmissible grapevine viruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号