首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Moisture retention properties of a mycorrhizal soil   总被引:1,自引:0,他引:1  
The water relations of arbuscular mycorrhizal plants have been compared often, but virtually nothing is known about the comparative water relations of mycorrhizal and nonmycorrhizal soils. Mycorrhizal symbiosis typically affects soil structure, and soil structure affects water retention properties; therefore, it seems likely that mycorrhizal symbiosis may affect soil water relations. We examined the water retention properties of a Sequatchie fine sandy loam subjected to three treatments: seven months of root growth by (1) nonmycorrhizal Vigna unguiculata given low phosphorus fertilization, (2) nonmycorrhizal Vigna unguiculata given high phosphorus fertilization, (3) Vigna unguiculata colonized by Glomus intraradices and given low phosphorus fertilization. Mycorrhization of soil had a slight but significant effect on the soil moisture characteristic curve. Once soil matric potential (m) began to decline, changes in m per unit change in soil water content were smaller in mycorrhizal than in the two nonmycorrhizal soils. Within the range of about –1 to –5 MPa, the mycorrhizal soil had to dry more than the nonmycorrhizal soils to reach the same m. Soil characteristic curves of nonmycorrhizal soils were similar, whether they contained roots of plants fed high or low phosphorus. The mycorrhizal soil had significantly more water stable aggregates and substantially higher extraradical hyphal densities than the nonmycorrhizal soils. Importantly, we were able to factor out the possibly confounding influence of differential root growth among mycorrhizal and nonmycorrhizal soils. Mycorrhizal symbiosis affected the soil moisture characteristic and soil structure, even though root mass, root length, root surface area and root volume densities were similar in mycorrhizal and nonmycorrhizal soils.  相似文献   

2.
In this study, we examined to what extent the internal site factors (light and soil conditions) are responsible for herb layer diversity in oak-dominated forest stands growing on different substrates in central Bohemia (Czech Republic). We collected data on herb layer diversity, light and nutrient availability at nine oak stands, representing the range of environmental variability for these types of forests in the region. We found that species richness increased with light availability, but only if the site occupied predominantly by fast-colonizing species was excluded from the analysis (P < 0.05). Species richness correlated positively with soil pH and negatively with nitrogen (N) concentration in humus (P < 0.05). The highest species richness was found at sites with not only low N soil concentration, but also simultaneously with high phosphorus (P) soil concentration. Despite this finding, however, herb layer diversity is evidently threatened much more in P-rich soils than in P-poor soils. It seems that the enhancement of N in an ecosystem due to litter accumulation and N deposition generally leads to only a minor increase in N availability at P-poor sites, but a considerable increase at P-rich sites. Therefore, species richness can be exceptionally high at P-rich sites, but only under conditions of strong N limitation.  相似文献   

3.
 In a pot experiment, the growth and the nutrient status of in vitro propagated coffee (Coffea arabica L.) microcuttings were investigated for 5 months following vesicular-arbuscular mycorrhizal (VAM) inoculation with either Acaulospora melleae or Glomus clarum at four soil P availabilities. Control plants remained P-deficient even at the highest soil P availability while mycorrhizal plants were P-sufficient at all soil P availabilities. Growth of control plants was only improved at the highest soil P availability. In P-deficient soil, neither of the two VAM species improved plant growth. Plant growth increased by 50% following inoculation with either A. melleae or G. clarum when P availability went from deficient to low. No further plant growth improvement was induced by either VAM species at intermediate and high soil P levels. Nevertheless, growth of plants inoculated with G. clarum was still significantly greater than that of non-mycorrhizal plants at the highest soil P availability. Root colonization by G. clarum increased with increasing soil P availability while root colonization by A. mellea decreased with soil P level increasing above low P availability. Soil P availability also affected Zn nutrition through its influence on VAM symbiosis. With increasing soil P availability, foliar Zn status increased with G. clarum or decreased with A. mellea in parallel to root colonization by VAM. This study demonstrates the beneficial effects of VAM inoculation on in vitro propagated Arabica coffee microcuttings, as shown previously for seedlings. This study also demonstrates differences in tolerance to soil P availability between VAM species, most likely resulting from their differing abilities to enhance coffee foliar P status. Accepted: 14 November 1996  相似文献   

4.
Nitrogen isotope measurements may provide insights into changing interactions among plants, mycorrhizal fungi, and soil processes across environmental gradients. Here, we report changes in δ15N signatures due to shifts in species composition and nitrogen (N) dynamics. These changes were assessed by measuring fine root biomass, net N mineralization, and N concentrations and δ15N of foliage, fine roots, soil, and mineral N across six sites representing different post-deglaciation ages at Glacier Bay, Alaska. Foliar δ15N varied widely, between 0 and –2‰ for nitrogen-fixing species, between 0 and –7‰ for deciduous non-fixing species, and between 0 and –11‰ for coniferous species. Relatively constant δ15N values for ammonium and generally low levels of soil nitrate suggested that differences in ammonium or nitrate use were not important influences on plant δ15N differences among species at individual sites. In fact, the largest variation among plant δ15N values were observed at the youngest and oldest sites, where soil nitrate concentrations were low. Low mineral N concentrations and low N mineralization at these sites indicated low N availability. The most plausible mechanism to explain low δ15N values in plant foliage was a large isotopic fractionation during transfer of nitrogen from mycorrhizal fungi to plants. Except for N-fixing plants, the foliar δ15N signatures of individual species were generally lower at sites of low N availability, suggesting either an increased fraction of N obtained from mycorrhizal uptake (f), or a reduced proportion of mycorrhizal N transferred to vegetation (T r). Foliar and fine root nitrogen concentrations were also lower at these sites. Foliar N concentrations were significantly correlated with δ15N in foliage of Populus, Salix, Picea, and Tsuga heterophylla, and also in fine roots. The correlation between δ15N and N concentration may reflect strong underlying relationships among N availability, the relative allocation of carbon to mycorrhizal fungi, and shifts in either f or T r. Received: 14 December 1998 / Accepted: 16 August 1999  相似文献   

5.
The mycorrhizal status of several representative shrub species (Lavandula spp. and Thymus satureioides) in Moroccan semiarid ecosystems, was evaluated as well as their contribution to the mycorrhizal potential of the soil. Furthermore, the rhizosphere soils collected under these target species were tested for their influence on the growth of Cupressus atlantica, a tree species whose natural stands has declined in this area. Soil samples were collected from the rhizosphere of L. stoechas, L. dentata and of C. atlantica existing in the experimental area. Control samples were randomly collected from bare soil sites, away from plant influence.All the target species formed AM symbiosis and the extent of AM fungal colonization was not significantly different between plant species. No significant difference was detected between the total number of AM fungal spores of the bare soil and those recorded in the root zones of target species and C. atlantica. Three genera of AM fungi (Scutellospora, Glomus and Acaulospora) were present in the rhizospheres of the plant species and in the bare soil.The number of mycorrhizal propagules in soil originating from around the four target plant species was significantly higher than the one in the bare soil (Figure 1). The most probable number (MPN) of mycorrhizal propagules per 100 g of dry soil ranged from 7.82 (bare soil) to 179.7 (L. dentata and C. atlantica) and 244.5 (L. stoechas and T. satureioides). As the total number of spores was not different for the soil of different origins, the increase of the mycorrhizal soil infectivity (MSI) mainly resulted from larger AM mycelial networks that constituted the main source of AM fungal inoculum. In addition, this MSI enhancement was linked with changes in the functioning of soil microbial communities. In a glasshouse experiment, the growth of C. atlantica seedlings was significantly higher in the C. atlantica and in the shrub species soils than in the bare soil. Although the AM inoculum potential is not sufficient to ensure the development of forest trees in Mediterranean ecosystems, the use of plant nurses such as T. satureioides or Lavandula spp. could be of great interest to restore a self-sustaining vegetation cover to act against desertification.  相似文献   

6.
The potential for mycorrhizal formation and Frankia nodulation were studied in soils from six sites in the Pacific Northwest. The sites included young and old alder stands, a 1-year-old conifer clear-cut, a young conifer plantation, and rotation-aged and old-growth conifer stands. A bioassay procedure was used with both red alder and Douglas fir seedlings as hosts. After 6 weeks growth, seedlings of both hosts were harvested every 3 weeks for 21 weeks and numbers of nodules and ectomycorrhizal types estimated. Nodules formed on red alder and ectomycorrhizae formed on both alder and Douglas fir in soil from all sites. Nodulation potential was highest in soil from the alder stands and the conifer plantation. Seven morphologically distinct ectomycorrhizal types were recovered on Douglas fir and five on alder. Only Thelephora terrestris, a broad-host-range mycobiont, formed mycorrhizae on both hosts. New ectomycorrhizal types formed on both hosts throughout the bioassay. Ectomycorrhizal colonization of alder was greatest in the alder and clear-cut soils. Low ectomycorrhizal colonization on alder was found in soils from sites where conifers were actively growing. Ectomycorrhizal colonization of Douglas fir was highest in the young alder and conifer plantation soils and was low in the rotation-aged conifer soil. The highest diversity of ectomycorrhizal types was found on alder in the conifer clear-cut soil and on Douglas fir in the rotation-aged conifer soil. Effects of host specificity, nodulation and mycorrhiza-forming potential and nodule-mycorrhiza interactions on seedling establishment are discussed in relation to seral stage dynamics and attributes of pioneer ectomycorrhizal fungal species.  相似文献   

7.
Reestablishing native perennial plants and reducing invasive species are pivotal for many ecological restoration projects. The interactions among plant species, arbuscular mycorrhizal fungi, and soil P availability may be critical determinants of the success of native and non‐native plants in restoration and species invasions. Here we assessed mycorrhizal responsiveness for three late‐successional and three early‐successional plant species native to Rocky Mountain National Park and for the non‐native Downy brome, cheatgrass (Bromus tectorum L.) using field soil and commercial inoculum. Factorial greenhouse experiments were conducted to compare biomass of plant species with and without field soil and commercial inoculum treatments along a phosphorus (P) gradient, which ranged from ambient field levels to 12% of field levels, using dilutions of native soils. The two field soil inoculum treatments resulted in significant biomass differences for all species studied. Late‐successional species responded positively to field inoculum, whereas early‐successional species responded negatively. The two commercial inocula had low colonization rates (14 of 166 inoculated plants). The commercial inocula substrates had significant treatment effects on five of seven species included in the study in the apparent absence of mycorrhizal symbiosis. Soil P levels influenced mycorrhizal responsiveness in only one species, Smooth blue aster (Aster laevis L.). Our results show that, at least for the species studied here, locally collected field inoculum is the best choice for reestablishment of late‐successional native plant species.  相似文献   

8.
Red alder (Alnus rubra Bong.) stands in the Pacific Northwest are the common first stage in succession following disturbance. These stands are highly productive and contribute a large amount of N to the soils as a result of their N2-fixing symbiosis with Frankia. As these alder stands age, the soils not only increase in total N, but concentrations of NO 3 increase and pH decreases as a result of nitrification. The objective of this study was to determine how the nodulation capacity of Frankia varies as red alder stands age and if differences in nodulation capacity are related to changes in soil properties. Nodulation capacity was determined by a red alder seedling bioassay for soils from red alder stands in the Oregon coast range covering a wide range of ages. Six chronosequences were sampled, each containing a young, an intermediate, and an older alder stand. Soil total N, total C, NO 3, NH+ 4, and pH were measured on the same soil samples. These factors as well as alder stand characteristics were compared with nodulation capacity in an attempt to identify soil characteristics typical in developing alder stands that most strongly affect nodulation capacity. Soil pH and NO 3 concentration were highly correlated with nodulation capacity and with each other. Cluster analysis of the sites using these two variables identified two groups with distinctly different nodulation capacities. The cluster with the higher nodulation capacity was lower in NO 3 and higher in pH than the other cluster, which included the majority of sites. There was substantial overlap in the age ranges for the two clusters and there was no significant correlation between age and nodulation capacity. Thus nodulation capacity appears to be most closely related to soil properties than to stand age.  相似文献   

9.
Fifty years of overexploitation have disturbed most forests within Sahelian areas. Exotic fast growing trees (i.e., Australian Acacia species) have subsequently been introduced for soil improvement and fuelwood production purposes. Additionally, rhizobial or mycorrhizal symbioses have sometimes been favored by means of controlled inoculations to increase the performance of these exotic trees in such arid and semiarid zones. Large-scale anthropogenic introduction of exotic plants could also threaten the native biodiversity and ecosystem resilience. We carried out an experimental reforestation in Burkina Faso in order to study the effects of Acacia holosericea mycorrhizal inoculation on the soil nutrient content, microbial soil functionalities and mycorrhizal soil potential. Treatments consisted of uninoculated A. holosericea, preplanting fertilizer application and arbuscular mycorrhizal inoculation with Glomus intraradices. Our results showed that (i) arbuscular mycorrhizal (AM) inoculation and prefertilizer application significantly improved A. holosericea growth after 4 years of plantation and (ii) the introduction of A. holosericea trees significantly modified soil microbial functions. The results clearly showed that the use of exotic tree legume species should be directly responsible for important changes in soil microbiota with great disturbances in essential functions driven by microbial communities (e.g., catabolic diversity and C cycling, phosphatase activity and P availability). They also highlighted the importance of AM symbiosis in the functioning of soils and forest plantation performances. The AM effect on soil functions was significantly correlated with the enhanced mycorrhizal soil potential recorded in the AM inoculation treatment.  相似文献   

10.
 Knowledge of physical, chemical and biological soil characteristics influencing plant response to inoculation with arbuscular mycorrhizal (AM) fungi would help to distinguish soils where inoculation could be profitable. The relationship between leek (Allium porrum L.) response to mycorrhizal inoculation with Glomus intraradices Schenck & Smith or G. versiforme (Karsten) Berch and soil texture, bulk density, particle density, porosity, pH, organic matter content, available P, K, Ca, Mg, Fe, Zn, Cu, and Mn, soil structure, soil mycorrhizal potential (SM), preceding crop mycorrhizal potential, composition of indigenous mycorrhizal fungal communities, and the abundance of spores of different species, was studied in 81 agricultural soils using Principal Component Analysis and regression analysis. The nature of the indigenous AM fungi population was an important determinant of leek response to inoculation (RTI). In soils with more than 200 μg available P g–1, SM potential accounted for over 27% of RTI with G. intraradices and G. versiforme, RTI being high in soils with low SM potential. In low P soils, however, a positive relation between the abundance of water stable soil aggregates in the 0.5–2 mm diameter range and RTI was most important. Low soil Zn and high porosity, abundant total mycorrhizal spore as well as scarcity of spores of G. aggregatum and of the group G. etunicatum-rubiforme were also associated to high RTI. The influence of water stable aggregation of soil on RTI was modulated by soil P levels. Abundance of soil aggregates was positively related to RTI at low soil P levels, but negatively related to RTI at high P levels. Different relationships were found between soil variables and spore abundance of different AM fungi species. Some AM species appear to have as yet undefined similarities or complementarities at the biological or ecological levels. Accepted: 23 July 1997  相似文献   

11.
Scots pine (Pinus sylvestris L.) stands cover large areas in the Lusatian and the Middle German lignite mining districts. Due to adverse chemical substrate conditions, the root systems of the trees are restricted to the ameliorated top-spoil and the organic forest floor layers. To investigate functioning of fine root systems under the prevailing site factors, we studied mycorrhizal colonization rate and frequency as well as mycorrhizal diversity, vitality and growth phases in Scots pine ecosystems along a chronosequence in both mining districts. Mycorrhizal rate was close to 100% in both districts. Mycorrhizal abundance was higher in the organic forest floor layer than the mineral soil layer. In total, 25 morphotypes were recorded. Diversity differed between the districts. The mycorrhizae of Amphinema byssoides, Tuber puberulum, Pinirhiza discolor, Pinirhiza cf. bicolorata and E-type were present in both mining areas. These morphotypes are typical of nutrient-rich soils with high pH values. Compared with the undisturbed sites, vitality of mycorrhizae was very high at the test sites on spoil substrate, correlating with the high growth dynamics of mycorrhizae at recultivation sites. A relatively high carbon flow to the mycorrhizal root systems at these sites seems likely. Thus, mycorrhizal root systems are able to cope with the ameliorated top-spoil and the organic layer. The main reason for the adaptation is the large number of ectomycorrhizal fungal species available in this area where Pinus sylvestris is indigenous.  相似文献   

12.
Corkidi  Lea  Rowland  Diane L.  Johnson  Nancy C.  Allen  Edith B. 《Plant and Soil》2002,240(2):299-310
The effects of nitrogen (N) fertilization on arbuscular mycorrhizas were studied at two semiarid grasslands with different soil properties and N-enrichment history (Shortgrass Steppe in Colorado, and Sevilleta National Wildlife Refuge in New Mexico). These sites are part of the National Science Foundation's Long-Term Ecological Research Network. The experimental plots at Shortgrass Steppe were fertilized with ammonium nitrate (NH4NO3) from 1971 to 1975, and have not received additional N since then. The experimental plots at Sevilleta were also fertilized with NH4NO3, but were established in 1995, 2 years before the soils were used for this study. Greenhouse experiments were conducted to compare the growth response of local grasses to arbuscular mycorrhizal (AM) fungi from fertilized (FERT) and unfertilized (UNFERT) field soils, at each site. Two species per site were chosen, Bouteloua gracilis and Elymus elymoides from Shortgrass Steppe, and B. gracilis and B. eriopoda from Sevilleta. Plants were grown for 3 months at HIGH N and LOW N levels, with FERT or UNFERT soil inoculum and in a non-mycorrhizal condition. Fertilization with N altered the functioning of AM fungi at both sites. Grasses inoculated with AM fungi from UNFERT soils had the most tillers, greatest biomass and highest relative growth rates. There were no significant differences in the growth response of plants inoculated with AM fungi from FERT soils and the non-mycorrhizal controls. These results were consistent across sites and species except for the plants grown at LOW N in Sevilleta soils. These plants were deficient in N and phosphorus (P) and did not show growth enhancement in response to AM inoculation with either FERT or UNFERT soils. Percent root length colonized by AM fungi was not directly related to plant performance. However, enrichment with N consistently decreased root colonization by AM fungi in the grasses grown in soils from Shortgrass Steppe with high P availability (18.4 mg kg–1), but not in the grasses grown in Sevilleta soils with low P availability (6.6 mg kg–1). Our study supports the hypotheses that (1) fertilization with N alters the balance between costs and benefits in mycorrhizal symbioses and (2) AM fungal communities from N fertilized soils are less beneficial mutualists than those from unfertilized soils.  相似文献   

13.
Seed banks represent a reservoir of propagules important for understanding plant population dynamics. Seed viability in soil depends on soil abiotic conditions, seed species, and soil biota. Compared to the vast amount of data on plant growth effects, next to nothing is known about how arbuscular mycorrhizal fungi (AMF) could influence viability of seeds in the soil seed bank. To test whether AMF could influence seed bank viability, we conducted three two‐factorial experiments using seeds of three herbaceous plant species (Taraxacum officinale, Dactylis glomerata, and Centaurea nigra) under mesocosm (experiments 1 and 2) and field conditions (experiment 3) and modifying the factor AMF presence (yes and no). To allow only hyphae to grow in and to prevent root penetration, paired root exclusion compartments (RECs) were used in experiments 2 and 3, which were either rotated (interrupted mycelium connection) or kept static (allows mycorrhizal connection). After harvesting, seed viability, soil water content, soil phosphorus availability, soil pH, and hyphal length in RECs were measured. In experiment 1, we used inoculation or not with the AMF Rhizophagus irregularis to establish the mycorrhizal treatment levels. A significant negative effect of mycorrhizal hyphae on viability of seeds was observed in experiments 1 and 3, and a similar trend in experiment 2. All three experiments showed that water content, soil pH, and AMF extraradical hyphal lengths were increased in the presence of AMF, but available P was decreased significantly. Viability of seeds in the soil seed bank correlated negatively with water content, soil pH, and AMF extraradical hyphal lengths and positively with soil P availability. Our results suggest that AMF can have a negative impact on soil seed viability, which is in contrast to the often‐documented positive effects on plant growth. Such effects must now be included in our conceptual models of the AM symbiosis.  相似文献   

14.

Background  

Like other species of the Phaseoleae tribe, common bean (Phaseolus vulgaris L.) has the potential to establish symbiosis with rhizobia and to fix the atmospheric dinitrogen (N2) for its N nutrition. Common bean has also the potential to establish symbiosis with arbuscular mycorrhizal fungi (AMF) that improves the uptake of low mobile nutrients such as phosphorus, from the soil. Both rhizobial and mycorrhizal symbioses can act synergistically in benefits on plant.  相似文献   

15.
Summary Greenhouse and field experiments were conducted on the effect of VA mycorrhiza (VAM) on the growth of cassava, various tropical grass and legume species, as well as beans, coffee and tea. A large number of VAM fungal species were evaluated for effectivity in increasing cassava growth and P uptake in acid low-P soils. The effectivity of VAM species and isolates was highly variable and dependent on soil pH and fertilizer applications, as well as on soil temperature and humidity. Two species,Glomus manihotis andEntrophospora colombiana were found to be most effective for a range of crops and pastures, at low pH and at a wide range of N, P, and K levels. At very low P levels nearly all crops and pasture species were highly mycorrhizal dependent, but at higher soil P levels cassava and several pasture legumes were more dependent than grass species. Mycorrhizal inoculation significantly increased cassava and bean yields in those soils with low or ineffective indigenous mycorrhizal populations. In these soils cassava root yields increased on the average 20–25% by VAM inoculation, both at the experiment station and in farmers’ fields. VAM inoculation of various pasture legumes and grasses, in combination with rock phosphate applications, increased their early growth and establishment. Agronomic practices such as fertilization, crop rotations, intercropping and pesticide applications were found to affect both the total VAM population as well as its species composition. While there is no doubt about the importance of VA mycorrhiza in enhancing P uptake and growth of many tropical crops and pastures grown on low-P soils, much more research is required to elucidate the complicated soil-plant-VAM interactions and to increase yields through improved mycorrhizal efficiency.  相似文献   

16.
Soil transfers from an intermediate successional site and a mature forest site were applied to Populus balsamifera L. cuttings and Alnus crispa (Ait.) Pursh seedlings placed on an abandoned mined site in south central Alaska to improve plant establishment. Mycorrhizal fungi in the soil transfers from the two successional stages were hypothesized to have different effects on plant species that colonize disturbed sites at different times or on different substrates. The site consisted of coarse, dry, low-nutrient spoils and was naturally colonized by scattered P. balsamifera but not A. crispa, although seed sources for both were adjacent to the site. Physical dimensions of the transplanted seedlings and cuttings were measured at the beginning and end of each growing season. Selected plants were harvested at the end of the 2-year study and examined for mycorrhizal formation, current growth, and leaf tissue nutrient concentrations. Both plant species were taller when treated with the soil transfers from the mature forest than with soils from the intermediate site although the increase for A. crispa was greater. Physical dimensions, current growth, and nutrient concentrations were greater when A. crispa was treated with the mature soil transfer compared with the intermediate soil transfer. Mycorrhizae which infected Alnus were predominantly a brown woody type, while other types accounted for greater relative mycorrhizal infection percentage on Populus. Insufficient quantities of mycorrhizal inoculum of suitable species, as well as low moisture and low nutrient conditions, may be factors limiting A. crispa colonization on primary disturbed sites in south central Alaska.  相似文献   

17.
This study investigated the differences between two fast-growing tropical tree species on soil N flux and availability. The work was conducted in the island of Hawaii and included three sites located along the Hamakua coast on the northeastern side of the island. Within each site pure stands of Eucalyptus saligna (Sm.)␣and the N2-fixing Albizia falcataria (L.) Fosberg [=Paraserianthes falcataria (L.) Nielsen] were arranged in four randomized complete blocks. For most of the variables considered in this study, the species effects were usually strong and the site effects were significant in some cases. After 13 years, soils under the Albizia stand contained larger pools of total soil C and N, and larger pools of inorganic N. Soil N availability indexed by ion exchange resin bags revealed a strong pattern of species and site effect on N availability; soils under Albizia showed a 2.6–9 fold increase in N availability (P < 0.01). Potential net rates of N transformation (10- and 30-day aerobic incubations) were more than twice as high for soils under the Albizia than under the Eucalytus stands. Nitrogen mineralization during anaerobic incubations were about 10% greater on Albizia soils. Gross microbial mineralization and immobilization were determined by estimating the gross rates of N transformation by the 15N-isotope pool dilution techniques. Across species and sites, a strong linear positive relationship was obtained for gross immobilization and gross mineralization indicating faster gross immobilization as gross mineralization increases. Soil microbial biomass on Albizia soils contained larger proportion of it as bacterial biomass, while larger proportion of fungi biomass comprised the microbial biomass under Eucalyptus soils. This study clearly showed that the presence of Albizia increased total N pools and N supply to the ecosystem. The overall effect on soil fertility will need to be characterized by the effect of the N2-fixer on other nutrients, especially the effect on phosphorus. Received: 28 February 1997 / Accepted: 22 September 1997  相似文献   

18.
In the terrestrial ecosystems, soil is an important component, characterized by holding high diversity of microorganisms which play a key role for productivity and vegetal composition. The group of symbionts microorganisms stands out for contributing directly to the growth and plant nutrition, and among them, the arbuscular mycorrhizal fungi form one of the oldest and well established associations. In order to increase the knowledge and contribute for further research with AMF and plants of Caatinga, in this review we compile data from previous studies on the effects of symbiosis between arbuscular mycorrhizal fungi (AMF) and plants of the Caatinga, a type of dry tropical forest found in the northeast of Brazil. These studies collected data under various experimental conditions, emphasizing fungal efficiency and host responsiveness in soils with varied fertility. From our analysis we conclude that in general the symbiotic efficiency on these plants depends on many factors, such as the plant-fungi combination, fertility and soil type. Furthermore, in leguminosae the impact of a joint inoculation with nitrogen fixing bacteria must be taken into account. Claroideoglomus etunicatum was the most tested AMF species benefiting almost all plants tested. Approximately 30 plant species were studied regarding possible benefits provided by AMF and of these only Hymenea courbaril and Aspidosperma pyrifolium did not respond to mycorrhization. Higher efficiency of the mycorrhizal symbiosis can be obtained in soils with low P levels, emphasizing the essential role of these microorganisms in the growth and survival of plant species from the Caatinga biome.  相似文献   

19.
Summary The effect of soil acidity on spore germination, germ tube growth and root colonization of vesicular-arbuscular mycorrhizal (VAM) fungi was examined using a Florida Ultisol. Soil samples were treated with 0, 4, 8 and 12 meq Ca/MgCO3/100 g soil and each lime level received 0, 240, and 720 ppm P as superphosphate. Corn (Zea mays L.) was planted in the soil treatments, inoculated with eitherGlomus mosseae orGigaspora margarita spores and grown for 31 days. Acid soil inhibits mycorrhizal formation byG. mosseae through its strong fungistatic effect against the spores. The dolomitic lime increased mycorrhizal formation by both fungal species.G. margarita is much less sensitive to acidic conditions thanG. mosseae. Al ions are a very important component of the fungistatic property against the VAM symbiosis. VAM fungus adaptation may be important for plants growing on infertile acid soils if soil inoculation with these fungi is to contribute significantly to low-input technology for tropical agricultural systems.  相似文献   

20.
Ritter  Eva  Vesterdal  Lars  Gundersen  Per 《Plant and Soil》2003,249(2):319-330
In many European countries, surplus agricultural production and ecological problems due to intensive soil cultivation have increased the interest in afforestation of arable soils. Many environmental consequences which might rise from this alternative land-use are only known from forest establishment on less intensively managed or marginal soils. The present study deals with changes in soil properties following afforestation of nutrient-rich arable soils. A chronosequence study was carried out comprising seven Norway spruce (Picea abies (Karst.) L.) and seven oak (Quercus robur L.) stands established from 1969 to 1997 on former horticultural and agricultural soils in the vicinity of Copenhagen, Denmark. For comparison, a permanent pasture and a ca. 200-year-old mixed deciduous forest were included. This paper reports on changes in pH values, base saturation (BSeff), exchangeable calcium, soil N pools (Nmin contents), and C/N ratios in the Ap-horizon (0–25 cm) and the accumulated forest floor. The results suggest that afforestation slowly modifies soil properties of former arable soils. Land-use history seems to influence soil properties more than the selected tree species. An effect of tree species was only found in the forest floor parameters. Soil acidification was the most apparent change along the chronosequence in terms of a pH decrease from 6 to 4 in the upper 5 cm soil. Forest floor pH varied only slightly around 5. Nitrogen storage in the Ap-horizon remained almost constant at 5.5 Mg N ha–1. This was less than in the mineral soil of the ca. 200-year-old forest. In the permanent pasture, N storage was somewhat higher in 0–15 cm depth than in afforested stands of comparable age. Nitrogen storage in the forest floor of the 0–30-year-old stands increased in connection with the build-up of forest floor mass. The increase was approximately five times greater under spruce than oak. Mineral soil C/N ratios ranged from 10 to 15 in all stands and tended to increase in older stands only in 0–5 cm depth. Forest floor C/N ratios were higher in spruce stands (26.4) as compared to oak stands (22.7). All stands except the youngest within a single tree species had comparable C/N ratios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号