首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cataracts are the leading cause of blindness worldwide owing to the increasing proportion of elderly individuals in the population. The purpose of this study was to investigate whether metformin could alleviate the occurrence and development of age-related cataract (ARC) and the underlying mechanism. In the present study, we established a senescence model induced by oxidative stress, which was confirmed by measuring β-galactosidase activity, qRT-PCR and Western blotting. In addition, we showed that metformin alleviated the oxidative stress-induced senescence of HLE-B3 cells via the activation of AMPK. Next, we provided evidence that oxidative stress impaired autophagic flux and induced lysosomal dysfunction. Subsequently, we found that metformin restored autophagic flux that had been impaired by oxidative stress by activating AMPK. Additionally, we found that metformin suppressed HLE-B3 cell senescence by improving lysosomal function and inactivating mTOR. Furthermore, the inactivation of AMPK, impairment of autophagic flux and lysosomal dysfunction were observed in the human lens epithelium of ARC. In summary, our data suggest that the activation of AMPK may be a potential strategy for preventing ARC, and metformin may be an emerging candidate to alleviate the formation and development of ARC.  相似文献   

2.
3.
Although c‐Myc is essential for melanocyte development, its role in cutaneous melanoma, the most aggressive skin cancer, is only partly understood. Here we used the NrasQ61KINK4a?/? mouse melanoma model to show that c‐Myc is essential for tumor initiation, maintenance, and metastasis. c‐Myc‐expressing melanoma cells were preferentially found at metastatic sites, correlated with increased tumor aggressiveness and high tumor initiation potential. Abrogation of c‐Myc caused apoptosis in primary murine and human melanoma cells. Mechanistically, c‐Myc‐positive melanoma cells activated and became dependent on the metabolic energy sensor AMP‐activated protein kinase (AMPK), a metabolic checkpoint kinase that plays an important role in energy and redox homeostasis under stress conditions. AMPK pathway inhibition caused apoptosis of c‐Myc‐expressing melanoma cells, while AMPK activation protected against cell death of c‐Myc‐depleted melanoma cells through suppression of oxidative stress. Furthermore, TCGA database analysis of early‐stage human melanoma samples revealed an inverse correlation between C‐MYC and patient survival, suggesting that C‐MYC expression levels could serve as a prognostic marker for early‐stage disease.  相似文献   

4.
In mammals, recombination activating gene 1 (RAG1) plays a crucial role in adaptive immunity, generating a vast range of immunoglobulins. Rag1?/? zebrafish (Danio rerio) are viable and reach adulthood without obvious signs of infectious disease in standard nonsterile conditions, suggesting that innate immunity could be enhanced to compensate for the lack of adaptive immunity. By using microarray analysis, we confirmed that the expression of immunity‐ and apoptosis‐related genes was increased in the rag1?/? fish. This tool also allows us to notice alterations of the DNA repair and cell cycle mechanisms in rag1?/? zebrafish. Several senescence and aging markers were analyzed. In addition to the lower lifespan of rag1?/? zebrafish compared to their wild‐type (wt) siblings, rag1?/? showed a higher incidence of cell cycle arrest and apoptosis, a greater amount of phosphorylated histone H2AX, oxidative stress and decline of the antioxidant mechanisms, an upregulated expression and activity of senescence‐related genes and senescence‐associated β‐galactosidase, respectively, diminished telomere length, and abnormal self‐renewal and repair capacities in the retina and liver. Metabolomic analysis also demonstrated clear differences between wt and rag1?/? fish, as was the deficiency of the antioxidant metabolite l ‐acetylcarnitine (ALCAR) in rag1?/? fish. Therefore, Rag1 activity does not seem to be limited to V(D)J recombination but is also involved in senescence and aging. Furthermore, we confirmed the senolytic effect of ABT‐263, a known senolytic compound and, for the first time, the potential in vivo senolytic activity of the antioxidant agent ALCAR, suggesting that this metabolite is essential to avoid premature aging.  相似文献   

5.
Dehydrozingerone (DHZ) exerts beneficial effects on human health; however, its mechanism of action remains unclear. Here, we found that DHZ suppressed high‐fat diet‐induced weight gain, lipid accumulation and hyperglycaemia in C57BL/6 mice and increased AMP‐activated protein kinase (AMPK) phosphorylation and stimulated glucose uptake in C2C12 skeletal muscle cells. DHZ activated p38 mitogen‐activated protein kinase (MAPK) signalling in an AMPK‐dependent manner. Inhibiting AMPK or p38 MAPK blocked DHZ‐induced glucose uptake. DHZ increased GLUT4 (major transporter for glucose uptake) expression in skeletal muscle. Glucose clearance and insulin‐induced glucose uptake increased in DHZ‐fed animals, suggesting that DHZ increases systemic insulin sensitivity in vivo. Thus, the beneficial health effects of DHZ could possibly be explained by its ability to activate the AMPK pathway in skeletal muscle.  相似文献   

6.
Autophagic dysfunction is observed in diabetes mellitus. Resveratrol has a beneficial effect on diabetic cardiomyopathy. Whether the resveratrol‐induced improvement in cardiac function in diabetes is via regulating autophagy remains unclear. We investigated the mechanisms underlying resveratrol‐mediated protection against heart failure in diabetic mice, with a focus on the role of sirtuin 1 (SIRT1) in regulating autophagic flux. Diabetic cardiomyopathy in mice was induced by streptozotocin (STZ). Long‐term resveratrol treatment improved cardiac function, ameliorated oxidative injury and reduced apoptosis in the diabetic mouse heart. Western blot analysis revealed that resveratrol decreased p62 protein expression and promoted SIRT1 activity and Rab7 expression. Inhibiting autophagic flux with bafilomycin A1 increased diabetic mouse mortality and attenuated resveratrol‐induced down‐regulation of p62, but not SIRT1 activity or Rab7 expression in diabetic mouse hearts. In cultured H9C2 cells, redundant or overactive H2O2 increased p62 and cleaved caspase 3 expression as well as acetylated forkhead box protein O1 (FOXO1) and inhibited SIRT1 expression. Sirtinol, SIRT1 and Rab7 siRNA impaired the resveratrol amelioration of dysfunctional autophagic flux and reduced apoptosis under oxidative conditions. Furthermore, resveratrol enhanced FOXO1 DNA binding at the Rab7 promoter region through a SIRT1‐dependent pathway. These results highlight the role of the SIRT1/FOXO1/Rab7 axis in the effect of resveratrol on autophagic flux in vivo and in vitro, which suggests a therapeutic strategy for diabetic cardiomyopathy.  相似文献   

7.
In the present study, we investigated the cytotoxic mechanism of Fumonisin B1 (FB1) in mice colonic region in a time course manner. Herein, after consecutive 4 days of exposure to FBI (2.5 mg/kg body weight), we observed disintegration of mice colon, as evidenced by histopathological analysis. FB1 significantly increased alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase activities in serum and plasma, decreased ceramide level, increased sphinganine level, and increased lipid peroxidase level along with the breakdown of the antioxidant system. Further, FB1‐induced ER stress caused apoptosis and autophagy activation in mice colon, evidenced by increased expression of IRE1‐α, p‐JNK, Casp3, and LC3I/II. In addition, we also noticed a reduced protein kinase C expression in mice colon exposed to FB1, suggesting its role in ER stress‐induced cell death. Taken together, study suggests both physiologically and biochemically, FB1 toxicity to mice colon induced by oxidative stress‐associated apoptosis and autophagy activation.  相似文献   

8.
Mitochondria are the major source of reactive oxygen species (ROS), whose aberrant production by dysfunctional mitochondria leads to oxidative stress, thus contributing to aging as well as neurodegenerative disorders and cancer. Cells efficiently eliminate damaged mitochondria through a selective type of autophagy, named mitophagy. Here, we demonstrate the involvement of the atypical MAP kinase family member MAPK15 in cellular senescence, by preserving mitochondrial quality, thanks to its ability to control mitophagy and, therefore, prevent oxidative stress. We indeed demonstrate that reduced MAPK15 expression strongly decreases mitochondrial respiration and ATP production, while increasing mitochondrial ROS levels. We show that MAPK15 controls the mitophagic process by stimulating ULK1‐dependent PRKN Ser108 phosphorylation and inducing the recruitment of damaged mitochondria to autophagosomal and lysosomal compartments, thus leading to a reduction of their mass, but also by participating in the reorganization of the mitochondrial network that usually anticipates their disposal. Consequently, MAPK15‐dependent mitophagy protects cells from accumulating nuclear DNA damage due to mitochondrial ROS and, consequently, from senescence deriving from this chronic DNA insult. Indeed, we ultimately demonstrate that MAPK15 protects primary human airway epithelial cells from senescence, establishing a new specific role for MAPK15 in controlling mitochondrial fitness by efficient disposal of old and damaged organelles and suggesting this kinase as a new potential therapeutic target in diverse age‐associated human diseases.  相似文献   

9.
Thioredoxin reductase 1 (TrxR1) is an important antioxidant enzyme that controls cellular redox homeostasis. By using a proteomic‐based approach, here we identify TrxR1 as a caveolar membrane‐resident protein. We show that caveolin 1, the structural protein component of caveolae, is a TrxR1‐binding protein by demonstrating that the scaffolding domain of caveolin 1 (amino acids 82–101) binds directly to the caveolin‐binding motif (CBM) of TrxR1 (amino acids 454–463). We also show that overexpression of caveolin 1 inhibits TrxR activity, whereas a lack of caveolin 1 activates TrxR, both in vitro and in vivo. Expression of a peptide corresponding to the caveolin 1 scaffolding domain is sufficient to inhibit TrxR activity. A TrxR1 mutant lacking the CBM, which fails to localize to caveolae and bind to caveolin 1, is constitutively active and inhibits oxidative‐stress‐mediated activation of the p53/p21Waf1/Cip1 pathway and induction of premature senescence. Finally, we show that caveolin 1 expression inhibits TrxR1‐mediated cell transformation. Thus, caveolin 1 links free radicals to activation of the p53/p21Waf1/Cip1 pathway and induction of cellular senescence by acting as an endogenous inhibitor of TrxR1.  相似文献   

10.
Mammalian target of rapamycin (mTOR) is a key protein kinase that regulates cell growth, metabolism, and autophagy to maintain cellular homeostasis. Its activity is inhibited by adverse conditions, including nutrient limitation, hypoxia, and DNA damage. In this study, we demonstrate that Che‐1, a RNA polymerase II‐binding protein activated by the DNA damage response, inhibits mTOR activity in response to stress conditions. We found that, under stress, Che‐1 induces the expression of two important mTOR inhibitors, Redd1 and Deptor, and that this activity is required for sustaining stress‐induced autophagy. Strikingly, Che‐1 expression correlates with the progression of multiple myeloma and is required for cell growth and survival, a malignancy characterized by high autophagy response.  相似文献   

11.
This study was undertaken to determine the role of secreted frizzled‐related protein 5 (SFRP5) in endothelial oxidative injury. Human aortic endothelial cells (HAECs) were exposed to different oxidative stimuli and examined for SFRP5 expression. The effects of SFRP5 overexpression and knockdown on cell viability, apoptosis, and reactive oxygen species production were measured. HAECs treated with angiotensin (Ang) II (1 μM) or oxidized low‐density lipoprotein (oxLDL) (150 μg/mL) showed a significant increase in SFRP5 expression. Overexpression of SFRP5 significantly attenuated the viability suppression and apoptosis induction by Ang II and oxLDL, whereas the knockdown of SFRP5 exerted opposite effects. Overexpression of SFRP5 prevented ROS formation and β‐catenin activation and reduced Bax expression. Co‐expression of Bax significantly reversed the anti‐apoptotic effect of SFRP5 overexpression, whereas knockdown of Bax restrained Ang II‐ and oxLDL‐induced apoptosis in HAECs. Taken together, SFRP5 confers protection against oxidative stress‐induced apoptosis through inhibition of β‐catenin activation and downregulation of Bax.  相似文献   

12.
13.
Cordycepin is a bioactive component of the fungus Cordyceps militaris. Previously, we showed that cordycepin can alleviate hyperlipidemia through enhancing the phosphorylation of AMP‐activated protein kinase (AMPK), but the mechanism of this stimulation is unknown. Here, we investigated the potential mechanisms of cordycepin‐induced AMPK activation in HepG2 cells. Treatment with cordycepin largely reduced oleic acid (OA)‐elicited intracellular lipid accumulation and increased AMPK activity in a dose‐dependent manner. Cordycepin‐induced AMPK activation was not accompanied by changes in either the intracellular levels of AMP or the AMP/ATP ratio, nor was it influenced by calmodulin‐dependent protein kinase kinase (CaMKK) inhibition; however, this activation was significantly suppressed by liver kinase B1 (LKB1) knockdown. Molecular docking, fluorescent and circular dichroism measurements showed that cordycepin interacted with the γ1 subunit of AMPK. Knockdown of AMPKγ1 by siRNA substantially abolished the effects of cordycepin on AMPK activation and lipid regulation. The modulating effects of cordycepin on the mRNA levels of key lipid regulatory genes were also largely reversed when AMPKγ1 expression was inhibited. Together, these data suggest that cordycepin may inhibit intracellular lipid accumulation through activation of AMPK via interaction with the γ1 subunit.  相似文献   

14.
Cellular senescence, the irreversible cell cycle arrest observed in somatic cells, is an important driver of age‐associated diseases. Mitochondria have been implicated in the process of senescence, primarily because they are both sources and targets of reactive oxygen species (ROS). In the heart, oxidative stress contributes to pathological cardiac ageing, but the mechanisms underlying ROS production are still not completely understood. The mitochondrial enzyme monoamine oxidase‐A (MAO‐A) is a relevant source of ROS in the heart through the formation of H2O2 derived from the degradation of its main substrates, norepinephrine (NE) and serotonin. However, the potential link between MAO‐A and senescence has not been previously investigated. Using cardiomyoblasts and primary cardiomyocytes, we demonstrate that chronic MAO‐A activation mediated by synthetic (tyramine) and physiological (NE) substrates induces ROS‐dependent DNA damage response, activation of cyclin‐dependent kinase inhibitors p21cip, p16ink4a, and p15ink4b and typical features of senescence such as cell flattening and SA‐β‐gal activity. Moreover, we observe that ROS produced by MAO‐A lead to the accumulation of p53 in the cytosol where it inhibits parkin, an important regulator of mitophagy, resulting in mitochondrial dysfunction. Additionally, we show that the mTOR kinase contributes to mitophagy dysfunction by enhancing p53 cytoplasmic accumulation. Importantly, restoration of mitophagy, either by overexpression of parkin or inhibition of mTOR, prevents mitochondrial dysfunction and induction of senescence. Altogether, our data demonstrate a novel link between MAO‐A and senescence in cardiomyocytes and provides mechanistic insights into the potential role of MAO‐dependent oxidative stress in age‐related pathologies.  相似文献   

15.
Patients suffering from diabetes mellitus (DM) are at a severe risk of atherothrombosis. Early growth response (Egr)‐1 is well characterized as a central mediator in vascular pathophysiology. We tested whether valsartan independent of Ang II type 1 receptor (AT1R) can reduce tissue factor (TF) and toll‐like receptor (TLR)‐2 and ‐4 by regulating Egr‐1 in THP‐1 cells and aorta in streptozotocin‐induced diabetic mice. High glucose (HG, 15 mM) increased expressions of Egr‐1, TF, TLR‐2 and ‐4 which were significantly reduced by valsartan. HG increased Egr‐1 expression by activation of PKC and ERK1/2 in THP‐1 cells. Valsartan increased AMPK phosphorylation in a concentration and time‐dependent manner via activation of LKB1. Valsartan inhibited Egr‐1 without activation of PKC or ERK1/2. The reduced expression of Egr‐1 by valsartan was reversed by either silencing Egr‐1, or compound C, or DN‐AMPK‐transfected cells. Valsartan inhibited binding of NF‐κB and Egr‐1 to TF promoter in HG condition. Furthermore, valsartan reduced inflammatory cytokine (TNF‐α, IL‐6 and IL‐1β) production and NF‐κB activity in HG‐activated THP‐1 cells. Interestingly, these effects of valsartan were not affected by either silencing AT1R in THP‐1 cells or CHO cells, which were devoid of AT1R. Importantly, administration of valsartan (20 mg/kg, i.p) for 8 weeks significantly reduced plasma TF activity, expression of Egr‐1, TLR‐2, ‐4 and TF in thoracic aorta and improved glucose tolerance of streptozotocin‐induced diabetic mice. Taken together, we concluded that valsartan may reduce atherothrombosis in diabetic conditions through AMPK/Egr‐1 regulation.  相似文献   

16.
17.
18.
19.
Genistein is an isoflavone that has estrogen (E2)‐like activity and is beneficial for follicular development, but little is known regarding its function in oxidative stress (OS)‐mediated granulosa cell (GC) injury. Here, we found that after exposure to H2O2, Genistein weakened the elevated levels of intracellular reactive oxygen species (ROS) and malondialdehyde (MDA), which were regarded as the biomarkers for OS, and rescued glutathione (GSH) content and GSH/GSSG ratio accompanying with a simultaneous increase in cyclic adenosine monophosphate (cAMP) level, whereas addition of protein kinase A (PKA) inhibitor H89 impeded the effects of Genistein on the levels of ROS and MDA. Further analysis evidenced that Genistein enhanced the activities of antioxidant enzymes superoxide dismutase (SOD), GSH‐peroxidase (GSH‐Px), and catalase (CAT) in H2O2‐treated GCs, but this enhancement was attenuated by H89. Under OS, Genistein improved cell viability and lessened the apoptotic rate of GCs along with a reduction in the activity of Casp3 and levels of Bax and Bad messenger RNA (mRNA), while H89 reversed the above effects. Moreover, Genistein treatment caused an obvious elevation in mitochondrial membrane potential (MMP) followed by a decline in the levels of intracellular mitochondrial superoxide, but H89 inhibited the regulation of Genistein on MMP and mitochondrial superoxide. Supplementation of Genistein promoted the secretion of E2 and increased the expression of Star and Cyp19a1 mRNA, whereas suppressed the level of progesterone (P4) accompanied with a decline in the level of Hsd3b1 mRNA expression. H89 blocked the regulation of Genistein on the secretion of E2 and P4, and alleviated the ascending of Star and Cyp19a1 elicited by Genistein. Collectively, Genistein protects GCs from OS via cAMP‐PKA signaling.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号