首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Autophagy is a cellular process for maintaining cellular homeostasis. This process can be induced by different factors, such as immune stimuli and pathogen-associated molecules. Autophagy has an important role in the control of IL-1β secretion by macrophages and other cell types. In present study, we describe a novel role for Iraqi propolis affecting autophagy in controlling the secretion of IL-1β in bone-marrow macrophages (BMDMs). After infection with Pseudomonas aeruginosa in the presence of propolis, the degradation of IL-1β was induced, and the activity of inflammasome was reduced. Iraqi propolis-induced autophagy in in vitro and in vivo models decreased the levels of IL-1β and caspase-1. Results indicated that IL-1β pathway production is regulated by autophagy via two different novel mechanisms, namely, regulation of the activation of NLRC4 inflammasome and IL-1β targeting for lysosomal degradation.  相似文献   

2.
Autophagy is a key regulator of cellular homeostasis that can be activated by pathogen-associated molecules and recently has been shown to influence IL-1β secretion by macrophages. However, the mechanisms behind this are unclear. Here, we describe a novel role for autophagy in regulating the production of IL-1β in antigen-presenting cells. After treatment of macrophages with Toll-like receptor ligands, pro-IL-1β was specifically sequestered into autophagosomes, whereas further activation of autophagy with rapamycin induced the degradation of pro-IL-1β and blocked secretion of the mature cytokine. Inhibition of autophagy promoted the processing and secretion of IL-1β by antigen-presenting cells in an NLRP3- and TRIF-dependent manner. This effect was reduced by inhibition of reactive oxygen species but was independent of NOX2. Induction of autophagy in mice in vivo with rapamycin reduced serum levels of IL-1β in response to challenge with LPS. These data demonstrate that autophagy controls the production of IL-1β through at least two separate mechanisms: by targeting pro-IL-1β for lysosomal degradation and by regulating activation of the NLRP3 inflammasome.  相似文献   

3.
Numerous atypical mycobacteria, including Mycobacterium abscessus (Mabc), cause nontuberculous mycobacterial infections, which present a serious public health threat. Inflammasome activation is involved in host defense and the pathogenesis of autoimmune diseases. However, inflammasome activation has not been widely characterized in human macrophages infected with atypical mycobacteria. Here, we demonstrate that Mabc robustly activates the nucleotide binding and oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasome via dectin-1/Syk-dependent signaling and the cytoplasmic scaffold protein p62/SQSTM1 (p62) in human macrophages. Both dectin-1 and Toll-like receptor 2 (TLR2) were required for Mabc-induced mRNA expression of pro-interleukin (IL)-1β, cathelicidin human cationic antimicrobial protein-18/LL-37 and β-defensin 4 (DEFB4). Dectin-1-dependent Syk signaling, but not that of MyD88, led to the activation of caspase-1 and secretion of IL-1β through the activation of an NLRP3/apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) inflammasome. Additionally, potassium efflux was required for Mabc-induced NLRP3/ASC inflammasome activation. Furthermore, Mabc-induced p62 expression was critically involved in NLRP3 inflammasome activation in human macrophages. Finally, NLRP3/ASC was critical for the inflammasome in antimicrobial responses to Mabc infection. Taken together, these data demonstrate the induction mechanism of the NLRP3/ASC inflammasome and its role in innate immunity to Mabc infection.  相似文献   

4.
The association between altered proteostasis and inflammatory disorders has been increasingly recognized, but the underlying mechanisms are not well understood. In this study, we show that deficiency of either autophagy or sequestosome 1 (p62 or SQSTM) led to inflammasome hyperactivation in response to LPS and ATP in primary macrophages and in mice in vivo. Importantly, induction of protein misfolding by puromycin, thapsigargin, or geldanamycin resulted in inflammasome activation that was more pronounced in autophagy- or p62-deficient macrophages. Accumulation of misfolded proteins caused inflammasome activation by inducing generation of nonmitochondrial reactive oxygen species and lysosomal damage, leading to release of cathepsin B. Our results suggest that altered proteostasis results in inflammasome activation and thus provide mechanisms for the association of altered proteostasis with inflammatory disorders.  相似文献   

5.
Serum amyloid A (SAA) is an acute-phase protein, the serum levels of which can increase up to 1000-fold during inflammation. SAA has a pathogenic role in amyloid A-type amyloidosis, and increased serum levels of SAA correlate with the risk for cardiovascular diseases. IL-1β is a key proinflammatory cytokine, and its secretion is strictly controlled by the inflammasomes. We studied the role of SAA in the regulation of IL-1β production and activation of the inflammasome cascade in human and mouse macrophages, as well as in THP-1 cells. SAA could provide a signal for the induction of pro-IL-1β expression and for inflammasome activation, resulting in secretion of mature IL-1β. Blocking TLR2 and TLR4 attenuated SAA-induced expression of IL1B, whereas inhibition of caspase-1 and the ATP receptor P2X(7) abrogated the release of mature IL-1β. NLRP3 inflammasome consists of the NLRP3 receptor and the adaptor protein apoptosis-associated speck-like protein containing CARD (a caspase-recruitment domain) (ASC). SAA-mediated IL-1β secretion was markedly reduced in ASC(-/-) macrophages, and silencing NLRP3 decreased IL-1β secretion, confirming NLRP3 as the SAA-responsive inflammasome. Inflammasome activation was dependent on cathepsin B activity, but it was not associated with lysosomal destabilization. SAA also induced secretion of cathepsin B and ASC. In conclusion, SAA can induce the expression of pro-IL-1β and activation of the NLRP3 inflammasome via P2X(7) receptor and a cathepsin B-sensitive pathway. Thus, during systemic inflammation, SAA may promote the production of IL-1β in tissues. Furthermore, the SAA-induced secretion of active cathepsin B may lead to extracellular processing of SAA and, thus, potentially to the development of amyloid A amyloidosis.  相似文献   

6.
The inflammasome is a multiprotein signaling complex that mediates inflammatory innate immune responses through caspase 1 activation and subsequent IL‐1β secretion. However, because its aberrant activation often leads to inflammatory diseases, targeting the inflammasome holds promise for the treatment of inflammation‐related diseases. In this study, it was found that a hot‐water extract of Sanguisorba officinalis (HSO) suppresses inflammasome activation triggered by adenosine 5′‐triphosphate, nigericin, microbial pathogens, and double stranded DNA in bone marrow‐derived macrophages. HSO was found to significantly suppress IL‐1β production in a dose‐dependent manner; this effect correlated well with small amounts of caspase 1 and little ASC pyroptosome formation in HSO‐treated cells. The anti‐inflammatory activity of HSO was further confirmed in a mouse model of endotoxin‐induced septic shock. Oral administration of HSO reduced IL‐1β titers in the serum and peritoneal cavity, increasing the survival rate. Taken together, our results suggest that HSO is an inhibits inflammasome activation through nucleotide‐binding domain and leucine‐rich repeat pyrin domain 3, nucleotide‐binding domain and leucine‐rich repeat caspase recruitment domain 4 and absent in melanoma 2 pathways, and may be useful for treatment of inflammasome‐mediated diseases.  相似文献   

7.
Production of IL‐1β typically requires two‐separate signals. The first signal, from a pathogen‐associated molecular pattern, promotes intracellular production of immature cytokine. The second signal, derived from a danger signal such as extracellular ATP, results in assembly of an inflammasome, activation of caspase‐1 and secretion of mature cytokine. The inflammasome component, Nalp3, plays a non‐redundant role in caspase‐1 activation in response to ATP binding to P2X7 in macrophages. Gingival epithelial cells (GECs) are an important component of the innate‐immune response to periodontal bacteria. We had shown that GECs express a functional P2X7 receptor, but the ability of GECs to secrete IL‐1β during infection remained unknown. We find that GECs express a functional Nalp3 inflammasome. Treatment of GECs with LPS or infection with the periodontal pathogen, Porphyromonas gingivalis, induced expression of the il‐1β gene and intracellular accumulation of IL‐1β protein. However, IL‐1β was not secreted unless LPS‐treated or infected cells were subsequently stimulated with ATP. Conversely, caspase‐1 is activated in GECs following ATP treatment but not P. gingivalis infection. Furthermore, depletion of Nalp3 by siRNA abrogated the ability of ATP to induce IL‐1β secretion in infected cells. The Nalp3 inflammasome is therefore likely to be an important mediator of the inflammatory response in gingival epithelium.  相似文献   

8.
Central nervous system (CNS) inflammation and autophagy dysfunction are known to be involved in the pathology of neurodegenerative diseases. Manganese (Mn), a neurotoxic metal, has the potential to induce microglia-mediated neuroinflammation as well as autophagy dysfunction. NLRP3 (NLR family, pyrin domain containing 3)- CASP1 (caspase 1) inflammasome-mediated neuroinflammation in microglia has specific relevance to neurological diseases. However, the mechanism driving these phenomena remains poorly understood. We demonstrate that Mn activates the NLRP3-CASP1 inflammasome pathway in the hippocampus of mice and BV2 cells by triggering autophagy-lysosomal dysfunction. The autophagy-lysosomal dysfunction is induced by lysosomal damage caused by excessive Mn accumulation, damaging the structure and normal function of these organelles. Additionally, we show that the release of lysosomal CTSB (cathepsin B) plays an important role in Mn-induced NLRP3-CASP1 inflammasome activation, and that the increased autophagosomes in the cytoplasm are not the main cause of NLRP3-CASP1 inflammasome activation. The accumulation of proinflammatory cytokines, such as IL1B (interleukin 1 β) and IL18 (interleukin 18), as well as the dysfunctional autophagy pathway may damage hippocampal neuronal cells, thus leading to hippocampal-dependent impairment in learning and memory, which is associated with the pathogenesis of Alzheimer disease (AD).  相似文献   

9.
10.
Interleukin‐1 alpha (IL‐1α) is a powerful cytokine that modulates immunity, and requires canonical cleavage by calpain for full activity. Mature IL‐1α is produced after inflammasome activation and during cell senescence, but the protease cleaving IL‐1α in these contexts is unknown. We show IL‐1α is activated by caspase‐5 or caspase‐11 cleavage at a conserved site. Caspase‐5 drives cleaved IL‐1α release after human macrophage inflammasome activation, while IL‐1α secretion from murine macrophages only requires caspase‐11, with IL‐1β release needing caspase‐11 and caspase‐1. Importantly, senescent human cells require caspase‐5 for the IL‐1α‐dependent senescence‐associated secretory phenotype (SASP) in vitro, while senescent mouse hepatocytes need caspase‐11 for the SASP‐driven immune surveillance of senescent cells in vivo. Together, we identify IL‐1α as a novel substrate of noncanonical inflammatory caspases and finally provide a mechanism for how IL‐1α is activated during senescence. Thus, targeting caspase‐5 may reduce inflammation and limit the deleterious effects of accumulated senescent cells during disease and Aging.  相似文献   

11.
Interleukin‐1β (IL‐1β) represents one of the most important mediators of inflammation and host responses to infection. Mycobacterium tuberculosis (Mtb), the causative agent of human tuberculosis, induces IL‐1β secretion at the site of infection, but the underlying mechanism(s) are poorly understood. In this work we show that Mtb infection of macrophages stimulates caspase‐1 activity and promotes the secretion of IL‐1β. This stimulation requires live intracellular bacteria expressing a functional ESX‐1 secretion system. ESAT‐6, an ESX‐1 substrate implicated in membrane damage, is both necessary and sufficient for caspase‐1 activation and IL‐1β secretion. ESAT‐6 promotes the access of other immunostimulatory agents such as AG85 into the macrophage cytosol, indicating that this protein may contribute to caspase‐1 activation largely by perturbing host cell membranes. Using a high‐throughput shRNA‐based screen we found that numerous NOD‐like receptors (NLRs) and CARD domain‐containing proteins (CARDs) were important for IL‐1β secretion upon Mtb infection. Most importantly, NLRP3, ASC and caspase‐1 form an infection‐inducible inflammasome complex that is essential for IL‐1β secretion. In summary, we show that recognition of Mtb infection by the NLRP3 inflammasome requires the activity of the bacterial virulence factor ESAT‐6, and the subsequent IL‐1β response is regulated by a number of NLR/CARD proteins.  相似文献   

12.
The macroautophagy/autophagy and inflammasome pathways are linked through their roles in innate immunity and chronic inflammatory disease. Ceramide-1-phosphate (C1P) is a bioactive sphingolipid that regulates pro-inflammatory eicosanoid production. Whether C1P also regulates autophagy and inflammasome assembly/activation is not known. Here we show that CPTP (a protein that traffics C1P from its site of phosphorylation in the trans-Golgi to target membranes) regulates both autophagy and inflammasome activation. In human epithelial cells, knockdown of CPTP (but not GLTP [glycolipid transfer protein]) or expression of C1P binding-site point mutants, stimulated an 8- to 10-fold increase in autophagosomes and altered endogenous LC3-II and SQSTM1/p62 protein expression levels. CPTP depletion-induced autophagy elevated early markers of autophagosome formation (Golgi-derived ATG9A-vesicles, WIPI1), required key phagophore assembly and elongation factors (ATG5, ATG7, ULK1), and suppressed MTOR phosphorylation and that of its downstream target, RPS6KB1/p70S6K. Wild-type CPTP overexpression exerted a protective effect against starvation-induced autophagy. In THP-1 macrophage-like surveillance cells, CPTP knockdown induced not only autophagy but also elevated CASP1/caspase-1 levels, and strongly increased IL1B/interleukin-1β and IL18 release via a NLRP3 (but not NLRC4) inflammasome-based mechanism, while only moderately increasing inflammatory (pyroptotic) cell death. Inflammasome assembly and activation stimulated by CPTP depletion were autophagy dependent. Elevation of intracellular C1P by exogenous C1P treatment (instead of CPTP inhibition) also induced autophagy and IL1B release. Our findings identify human CPTP as an endogenous regulator of early-stage autophagosome assembly and inflammasome-driven, pro-inflammatory cytokine generation and release.  相似文献   

13.
14.
15.
16.
Impairment of the oesophageal epithelium in patients with reflux oesophagitis (RE) is a cytokine‐mediated injury rather than a chemical burn. The present study was conducted to explore CaSR/NLRP3 inflammasome pathway activation and cytokines IL‐1β and IL‐18 release in oesophageal epithelia injured by refluxates and the effects of Tojapride on that signal regulation. Using a modified RE rat model with Tojapride administration and Tojapride‐pretreated SV40‐immortalized human oesophageal epithelial cells (HET‐1A) exposed to acidic bile salts pretreated with Tojapride, we evaluated the therapeutic effects of Tojapride on oesophageal epithelial barrier function, the expression of CaSR/NLRP3 inflammasome pathway‐related proteins and the release of downstream cytokines in response to acidic bile salt irritation. In vivo, Tojapride treatment ameliorated the general condition and pathological lesions of the oesophageal epithelium in modified RE rats. In addition, Tojapride effectively blocked the CaSR‐mediated NLRP3 inflammasome activation in modified RE rats. In vitro, Tojapride treatment can reverse the harmful effect of acidic bile salts, which reduced transepithelial electrical resistance (TEER), up‐regulated the CaSR‐mediated NLRP3 inflammasome pathway and increased caspase‐1 activity, LDH release and cytokines secretion. Taken together, these data show that Tojapride can prevent CaSR‐mediated NLRP3 inflammasome activation and alleviate oesophageal epithelial injury induced by acidic bile salt exposure.  相似文献   

17.

Objective

In the pathogenesis of coronary atherosclerosis, local macrophage-driven inflammation and secretion of proinflammatory cytokines, interleukin-1β (IL-1β) in particular, are recognized as key factors. Moderate alcohol consumption is associated with a reduced risk of coronary artery disease mortality. Here we examined in cultured human macrophages whether ethanol modulates the intracellular processes involved in the secretion of IL-1β.

Results

Ethanol decreased dose-dependently the production of mature IL-1β induced by activators of the NLRP3 inflammasome, i.e. ATP, cholesterol crystals, serum amyloid A and nigericin. Ethanol had no significant effect on the expression of NLRP3 or IL1B mRNA in LPS-primed macrophages. Moreover, secretion of IL-1β was decreased in parallel with reduction of caspase-1 activation, demonstrating that ethanol inhibits inflammasome activation instead of synthesis of pro-IL-1β. Acetaldehyde, a highly reactive metabolite of ethanol, had no effect on the ATP-induced IL-1β secretion. Ethanol also attenuated the secretion of IL-1β triggered by synthetic double-stranded DNA, an activator of the AIM2 inflammasome. Ethanol conferred the inhibitory functions by attenuating the disruption of lysosomal integrity and ensuing leakage of the lysosomal protease cathepsin B and by reducing oligomerization of ASC.

Conclusion

Ethanol-induced inhibition of the NLRP3 inflammasome activation in macrophages may represent a biological pathway underlying the protective effect of moderate alcohol consumption on coronary heart disease.  相似文献   

18.
Chang HH  Asano N  Ishii S  Ichikawa Y  Fan JQ 《The FEBS journal》2006,273(17):4082-4092
Gaucher disease is an autosomal recessive lysosomal storage disorder caused by the deficient activity of glucocerebrosidase. Accumulation of glucosylceramide, primarily in the lysosomes of cells of the reticuloendothelial system, leads to hepatosplenomegaly, anemia and skeletal lesions in type I disease, and neurologic manifestations in types II and III disease. We report herein the identification of hydrophilic active-site-specific chaperones that are capable of increasing glucocerebrosidase activity in the cultured fibroblasts of Gaucher patients. Screening of a variety of natural and synthetic alkaloid compounds showed isofagomine, N-dodecyl deoxynojirimycin, calystegines A3, B1, B2 and C1, and 1,5-dideoxy-1,5-iminoxylitol to be potent inhibitors of glucocerebrosidase. Among them, isofagomine was the most potent inhibitor of glucocerebrosidase in vitro, and the most effective active-site-specific chaperone capable of increasing residual glucocerebrosidase activity in fibroblasts established from Gaucher patients with the most prevalent Gaucher disease-causing mutation (N370S). Intracellular enzyme activity increased approximately two-fold after cells had been incubated with isofagomine, and the increase in glucocerebrosidase activity was both dose-dependent and time-dependent. Western blotting demonstrated that there was a substantial increase in glucocerebrosidase protein in cells after isofagomine treatment. Immunocytochemistry revealed an improvement in the glucocerebrosidase trafficking pattern, which overlaps that of lysosome-associated membrane protein 2 in Gaucher fibroblasts cultivated with isofagomine, suggesting that the transport of mutant glucocerebrosidase is at least partially improved in the presence of isofagomine. The hydrophilic active-site-specific chaperones are less toxic to cultured cells. These results indicate that these hydrophilic small molecules are suitable candidates for further drug development for the treatment of Gaucher disease.  相似文献   

19.
Inflammasomes are cytosolic, multimeric protein complexes capable of activating pro‐inflammatory cytokines such as IL‐1β and IL‐18, which play a key role in host defence. Inflammasome components are highly expressed in the intestinal epithelium. In recent years, studies have begun to demonstrate that epithelial‐intrinsic inflammasomes play a critical role in regulating epithelial homeostasis, both by defending the epithelium from pathogenic insult and through the regulation of the mucosal environment. However, the majority of research regarding inflammasome activation has focused on professional immune cells, such as macrophages. Here, we present an overview of the current understanding of inflammasome function in epithelial cells and at mucosal surfaces and, in particular, in the intestine.  相似文献   

20.

Background

Chronic inflammation of the arterial wall is a key element in the pathogenesis of atherosclerosis, yet the factors that trigger and sustain the inflammation remain elusive. Inflammasomes are cytoplasmic caspase-1-activating protein complexes that promote maturation and secretion of the proinflammatory cytokines interleukin(IL)-1β and IL-18. The most intensively studied inflammasome, NLRP3 inflammasome, is activated by diverse substances, including crystalline and particulate materials. As cholesterol crystals are abundant in atherosclerotic lesions, and IL-1β has been linked to atherogenesis, we explored the possibility that cholesterol crystals promote inflammation by activating the inflammasome pathway.

Principal Findings

Here we show that human macrophages avidly phagocytose cholesterol crystals and store the ingested cholesterol as cholesteryl esters. Importantly, cholesterol crystals induced dose-dependent secretion of mature IL-1β from human monocytes and macrophages. The cholesterol crystal-induced secretion of IL-1β was caspase-1-dependent, suggesting the involvement of an inflammasome-mediated pathway. Silencing of the NLRP3 receptor, the crucial component in NLRP3 inflammasome, completely abolished crystal-induced IL-1β secretion, thus identifying NLRP3 inflammasome as the cholesterol crystal-responsive element in macrophages. The crystals were shown to induce leakage of the lysosomal protease cathepsin B into the cytoplasm and inhibition of this enzyme reduced cholesterol crystal-induced IL-1β secretion, suggesting that NLRP3 inflammasome activation occurred via lysosomal destabilization.

Conclusions

The cholesterol crystal-induced inflammasome activation in macrophages may represent an important link between cholesterol metabolism and inflammation in atherosclerotic lesions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号