首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ehrlichia ruminantium is the causative agent of heartwater, a major tick-borne disease of livestock in Africa that has been introduced in the Caribbean and is threatening to emerge and spread on the American mainland. We sequenced the complete genomes of two strains of E. ruminantium of differing phenotypes, strains Gardel (Erga; 1,499,920 bp), from the island of Guadeloupe, and Welgevonden (Erwe; 1,512,977 bp), originating in South Africa and maintained in Guadeloupe in a different cell environment. Comparative genomic analysis of these two strains was performed with the recently published parent strain of Erwe (Erwo) and other Rickettsiales (Anaplasma, Wolbachia, and Rickettsia spp.). Gene order is highly conserved between the E. ruminantium strains and with A. marginale. In contrast, there is very little conservation of gene order with members of the Rickettsiaceae. However, gene order may be locally conserved, as illustrated by the tuf operons. Eighteen truncated protein-encoding sequences (CDSs) differentiate Erga from Erwe/Erwo, whereas four other truncated CDSs differentiate Erwe from Erwo. Moreover, E. ruminantium displays the lowest coding ratio observed among bacteria due to unusually long intergenic regions. This is related to an active process of genome expansion/contraction targeted at tandem repeats in noncoding regions and based on the addition or removal of ca. 150-bp tandem units. This process seems to be specific to E. ruminantium and is not observed in the other Rickettsiales.  相似文献   

2.
Heartwater is an economically important disease of ruminants caused by the tick-transmitted rickettsia Cowdria ruminantium. The disease is present in Africa and the Caribbean and there is a risk of spread to the Americas, particularly because of a clinically asymptomatic carrier state in infected livestock and imported wild animals. The causative agent is closely related taxonomically to the human and animal pathogens Ehrlichia chaffeensis and Ehrlichia canis. A dominant immune response of infected animals or people is directed against variable outer membrane proteins of these agents known, in E. chaffeensis and E. canis, to be encoded by polymorphic multigene families. We demonstrate, by sequence analysis, that map1 encoding the major outer membrane protein of C. ruminantium is also encoded by a polymorphic multigene family. Two members of the gene family are located in tandem in the genome. The upstream member, orf2, is conserved, encoding only 2 amino acid substitutions among six different rickettsial strains from diverse locations in Africa and the Caribbean. In contrast, the downstream member, map1, contains variable and conserved regions between strains. Interestingly, orf2 is more closely related in sequence to omp1b of E. chaffeensis than to map1 of C. ruminantium. The regions that differ among orf2, map1, and omp1b correspond to previously identified variable sequences in outer membrane protein genes of E. chaffeensis and E. canis. These data suggest that diversity in these outer membrane proteins may arise by recombination among gene family members and offer a potential mechanism for persistence of infection in carrier animals.  相似文献   

3.
Several wild animal species have been implicated as hosts of Ehrlichia ruminantium (formerly Cowdria ruminantium), the rickettsial agent causing heartwater, a fatal disease of domestic ruminants in sub-Saharan Africa and eastern Caribbean. However, evidence for infection in most wild species is inconclusive because of inadequate diagnostic techniques. Infection has been proven only in 12 African ruminants, three non-African ruminants and two African rodents. A subclinical carrier state occurs in eight of the African ruminant species. Further studies on E. ruminantium infection in wild animal species are needed in order to determine the host range of this pathogen accurately. The host range of Ehrlichia ruminantium in wildlife is reviewed here and the role played by these species in the epidemiology and spread of heartwater is discussed.  相似文献   

4.
The 16S ribosomal DNA sequence of Cowdria ruminantium, the causative agent of heartwater disease in ruminants, was determined. An analysis of this sequence showed that C. ruminantium forms a tight phylogenetic cluster with the canine pathogen Ehrlichia canis and the human pathogen Ehrlichia chaffeensis. Although a close relationship between the genus Cowdria and several members of the tribe Ehrlichieae has been suspected previously, the tight phylogenetic cluster with E. canis and E. chaffeensis is surprising in view of known differences in host preference and target cells.  相似文献   

5.
We detected a novel tick-transmitted Ehrlichia in a goat following exposure to lone star ticks (Amblyomma americanum) from a park in the metropolitan area of Atlanta, GA, U.S.A. Nineteen days after infestation with field-collected adult ticks, the goat developed a fever of two days duration, which coincided with mild clinical pathologic changes and the presence of DNA from a novel Ehrlichia in peripheral blood. The goat transmitted ehrlichiae to uninfected nymphal A. americanum that fed upon the goat, and the ticks maintained the pathogen transstadially. Five months after exposure, immunosuppression of the goat resulted in transient ehrlichemia with transmission of ehrlichiae to feeding ticks. Sequencing and phylogenetic reconstructions of the 16S rRNA, gltA, map1, map2, and ribonuclease III genes suggest the agent might be a divergent strain of Ehrlichia ruminantium, the agent of heartwater, or a new, closely related species. Convalescent serum from the goat reacted with the MAP-1 protein of E. ruminantium and with whole-cell Ehrlichia chaffeensis antigen. DNA from the novel Ehrlichia was detected in 5/302 field-collected adult A. americanum from the park. Our data suggest that A. americanum is a natural vector and reservoir of this Ehrlichia and that domestic goats can be reservoirs. The geographic range of the agent and its pathogenicity to humans and livestock needs to be evaluated.  相似文献   

6.
The rickettsial bacterium Ehrlichia ruminantium is the causative agent of heartwater, a serious tick-borne disease in ruminants. The genetic diversity of organisms in the field will have implications for cross-protective capacities of any vaccine developed, and for an effective vaccine design strategy proper genotyping and understanding of existing genetic diversity in the field is necessary. We searched for variable-number tandem-repeat (VNTR) loci for use in a multi-locus VNTR analysis (MLVA). Sequencing analysis of 30 potential VNTRs using a panel of 17 reference strains from geographically diverse origins identified 12 VNTRs with allelic profiles differing between strains. Application of MLVA to 38 E. ruminantium-infected Amblyomma variegatum collected from indigenous cattle in 6 different districts of Uganda identified 21 MLVA types. The discriminatory power of MLVA was greater than that of map1 PCR-restriction fragment length polymorphism analysis, with which only 6 genotypes were obtained. The high discriminatory power as well as cost- effective performance of MLVA provide the potential for this technique to be applied in the future with respect to optimizing vaccine trials by identifying local strain diversity, and also raise the possibility of exploring the association between E. ruminantium genotypes and phenotypes such as pathological outcome in the ruminant host.  相似文献   

7.
Genome comparison is now a crucial step for genome annotation and identification of regulatory motifs. Genome comparison aims for instance at finding genomic regions either specific to or in one-to-one correspondence between individuals/strains/species. It serves e.g. to pre-annotate a new genome by automatically transferring annotations from a known one. However, efficiency, flexibility and objectives of current methods do not suit the whole spectrum of applications, genome sizes and organizations. Innovative approaches are still needed. Hence, we propose an alternative way of comparing multiple genomes based on segmentation by similarity. In this framework, rather than being formulated as a complex optimization problem, genome comparison is seen as a segmentation question for which a single optimal solution can be found in almost linear time. We apply our method to analyse three strains of a virulent pathogenic bacteria, Ehrlichia ruminantium, and identify 92 new genes. We also find out that a substantial number of genes thought to be strain specific have potential orthologs in the other strains. Our solution is implemented in an efficient program, qod, equipped with a user-friendly interface, and enables the automatic transfer of annotations between compared genomes or contigs (Video in Supplementary Data). Because it somehow disregards the relative order of genomic blocks, qod can handle unfinished genomes, which due to the difficulty of sequencing completion may become an interesting characteristic for the future. Availabilty: http://www.atgc-montpellier.fr/qod.  相似文献   

8.
《Gene》1997,184(2):149-154
Ehrlichia chaffeensis is the tick-borne, obligately intracellular bacterium that causes human monocytic ehrlichiosis. A 120-kDa protein is one of the immunodominant proteins of E. chaffeensis that stimulates production of specific antibodies in infected humans. A genomic library of E. chaffeensis was constructed in a λZAP II phage vector, and a clone expressing the 120-kDa protein of E. chaffeensis was identified using canine anti-E. chaffeensis serum. DNA sequence analysis of the cloned 120-kDa protein gene of E. chaffeensis identified a 1884-bp open reading frame with an ehrlichial promoter. Five identical 240-bp tandem repeat units were identified in the 120-kDa protein gene of E. chaffeensis, comprising 60% of the entire gene. Aside from the first repeat unit, all the other repeat units are identical. In the first repeat unit there are four nucleotides that are different from the other repeats. Hydropathy analysis of the deduced amino-acid sequence demonstrated that the repeat domain contains highly hydrophilic segments. The 120-kDa protein should be evaluated for a role in stimulating protective immunity.  相似文献   

9.
BACKGROUND: Strains of the endosymbiotic bacterium Wolbachia pipientis are extremely diverse both genotypically and in terms of their induced phenotypes in invertebrate hosts. Despite extensive molecular characterisation of Wolbachia diversity, little is known about the actual genomic diversity within or between closely related strains that group tightly on the basis of existing gene marker systems, including Multiple Locus Sequence Typing (MLST). There is an urgent need for higher resolution fingerprinting markers of Wolbachia for studies of population genetics, horizontal transmission and experimental evolution. RESULTS: The genome of the wMel Wolbachia strain that infects Drosophila melanogaster contains inter- and intragenic tandem repeats that may evolve through expansion or contraction. We identified hypervariable regions in wMel, including intergenic Variable Number Tandem Repeats (VNTRs), and genes encoding ankyrin (ANK) repeat domains. We amplified these markers from 14 related Wolbachia strains belonging to supergroup A and were successful in differentiating size polymorphic alleles. Because of their tandemly repeated structure and length polymorphism, the markers can be used in a PCR-diagnostic multilocus typing approach, analogous to the Multiple Locus VNTR Analysis (MLVA) established for many other bacteria and organisms. The isolated markers are highly specific for supergroup A and not informative for other supergroups. However, in silico analysis of completed genomes from other supergroups revealed the presence of tandem repeats that are variable and could therefore be useful for typing target strains. CONCLUSIONS: Wolbachia genomes contain inter- and intragenic tandem repeats that evolve through expansion or contraction. A selection of polymorphic tandem repeats is a novel and useful PCR diagnostic extension to the existing MLST typing system of Wolbachia, as it allows rapid and inexpensive high-throughput fingerprinting of closely related strains for which polymorphic markers were previously lacking.  相似文献   

10.
An Ehrlichia sp. (Panola Mountain [PM] Ehrlichia sp.) closely related to Ehrlichia ruminantium was recently detected in a domestic goat experimentally infested with lone star ticks (LSTs, Amblyomma americanum) collected from Georgia, USA. The infected goat exhibited pyrexia and mild clinical pathologic abnormalities consistent with ehrlichiosis. At least two other Ehrlichia species (Ehrlichia chaffeensis and Ehrlichia ewingii) are maintained in nature by a cycle involving LSTs as the primary vector and white-tailed deer (Odocoileus virginanus) as a known or suspected reservoir. To investigate the possibility that white-tailed deer are potential hosts of the PM Ehrlichia sp., whole blood samples collected from 87 wild deer from 2000 to 2002 were screened with a species-specific nested PCR assay targeting the citrate synthase gene. In addition, two laboratory-raised white-tailed deer fawns were each infested with 120 wild-caught LST adults from Missouri, USA, and blood samples were periodically collected and tested for the PM Ehrlichia sp. Of 87 deer tested from 20 locations in the southeastern United States, three (3%) deer from Arkansas, North Carolina, and Virginia were positive for the PM Ehrlichia sp. Wild-caught ticks transmitted the PM Ehrlichia sp. to one of two deer fawns, and colony-reared nymphal LSTs acquired the organism from the deer, maintained it transstadially as they molted to adults, and transmitted the PM Ehrlichia sp. to two na?ve fawns. These findings indicate that white-tailed deer are naturally and experimentally susceptible to infection with an Ehrlichia sp. closely related to E. ruminantium and are able to serve as a source of infection to LSTs.  相似文献   

11.
We have determined the nucleotide sequence of a region of DNA derived from the end of one chromosome of the yeast, Saccharomyces cerevisiae. Inspection of the sequence reveals the presence of 12 tandem direct repeats, each 36 nucleotides long and having nearly identical sequence. Each 36 base-pair repeat can be further subdivided into three tandem sub-repeats of a similar 12 base-pair sequence. Analysis of total genomic yeast DNA from several strains by Southern hybridization suggests that the number of tandem 36 base-pair repeat units may vary from approximately 8 to 25 among different telomeric regions. Differences in the number of repeats may have arisen by unequal crossing over between them. Furthermore, the finding that the pattern of bases at multiple variable positions within the repeat unit is not random suggests that these regions may undergo gene conversion events that render them homogeneous.  相似文献   

12.
《Genomics》2019,111(6):1713-1719
  相似文献   

13.
Phase variation of lipopolysaccharide epitopes of an Haemophilus influenzae serotype b strain (strain RM.7004) occurs through a mechanism which depends on multiple tandem repeats of the DNA sequence 5'-CAAT-3' situated within the chromosomal locus lic1. We report here that the same tetranucleotide repeats are also found in two other genomic loci (lic2 and lic3) of RM.7004. Similar to lic1, there are multiple tandem repeats of 5'-CAAT-3' present at the 5' ends of long open reading frames in lic2 and lic3. Variation in the number of repeats of CAAT, by shifting the upstream initiation codons in or out of phase with the remainder of the open reading frame, could switch on or off the translation of downstream genes. Similar to previously reported findings for lic1, site-directed mutations in the open reading frame downstream (3') from the repeats of CAAT in lic2 abolished phase variation and identified DNA sequences required for the expression of additional oligosaccharide epitopes. When we used an oligonucleotide comprising five repeats of CAAT or DNA sequences specific for lic1, lic2, and lic3 as probes, a survey of other encapsulated H. influenzae strains (serotypes a through f) and nontypable H. influenzae strains (including biotype aegyptius) showed that the chromosome of H. influenzae can have from two to five regions which contain multiple tandem repeats of CAAT in addition to other sequences which hybridize to lic1 and lic2.  相似文献   

14.
15.
Variable-number tandem repeats (VNTR) analysis and BOX-repeat-based PCR (BOX-PCR) genomic fingerprinting were performed on 25 Bacillus strains to investigate the genetic relatedness of Bacillus anthracis to the closely related species. Based on VNTR analysis, all B. anthracis strains could be assigned to (VNTR)(4), which is the most commonly found type in the world. Interestingly, a (VNTR)(2) was also observed in Bacillus cereus KCTC 1661 and with an exact match to the tandem repeats found in B. anthracis. This finding has never been reported before in the closely related species. According to the BOX-PCR, B. anthracis strains clustered together and separated reliably from the closely related species. However, B. cereus KCTC 1661 was linked to the B. anthracis cluster and showed close relationships with B. anthracis strains. These results indicated that there was a strong correlation between VNTR analysis and BOX-PCR genomic fingerprinting.  相似文献   

16.

Background

Ancestral reconstructions of mammalian genomes have revealed that evolutionary breakpoint regions are clustered in regions that are more prone to break and reorganize. What is still unclear to evolutionary biologists is whether these regions are physically unstable due solely to sequence composition and/or genome organization, or do they represent genomic areas where the selection against breakpoints is minimal.

Methodology and Principal Findings

Here we present a comprehensive study of the distribution of tandem repeats in great apes. We analyzed the distribution of tandem repeats in relation to the localization of evolutionary breakpoint regions in the human, chimpanzee, orangutan and macaque genomes. We observed an accumulation of tandem repeats in the genomic regions implicated in chromosomal reorganizations. In the case of the human genome our analyses revealed that evolutionary breakpoint regions contained more base pairs implicated in tandem repeats compared to synteny blocks, being the AAAT motif the most frequently involved in evolutionary regions. We found that those AAAT repeats located in evolutionary regions were preferentially associated with Alu elements.

Significance

Our observations provide evidence for the role of tandem repeats in shaping mammalian genome architecture. We hypothesize that an accumulation of specific tandem repeats in evolutionary regions can promote genome instability by altering the state of the chromatin conformation or by promoting the insertion of transposable elements.  相似文献   

17.
18.
MOTIVATION: Tandem repeats are associated with disease genes, play an important role in evolution and are important in genomic organization and function. Although much research has been done on short perfect patterns of repeats, there has been less focus on imperfect repeats. Thus, there is an acute need for a tandem repeats database that provides reliable and up to date information on both perfect and imperfect tandem repeats in the human genome and relates these to disease genes. RESULTS: This paper presents a web-accessible relational tandem repeats database that relates tandem repeats to gene locations and disease genes of the human genome. In contrast to other available databases, this database identifies both perfect and imperfect repeats of 1-2000 bp unit lengths. The utility of this database has been illustrated by analysing these repeats for their distribution and frequencies across chromosomes and genomic locations and between protein-coding and non-coding regions. The applicability of this database to identify diseases associated with previously uncharacterized tandem repeats is demonstrated.  相似文献   

19.
G B Morin  T R Cech 《Cell》1988,52(3):367-374
The DNA sequences at the ends of the linear mtDNA of 6 species of Tetrahymena encompassing 13 strains were determined. All the strains have variable numbers of a tandemly repeated DNA sequence, 31 bp to 53 bp in size, at their mtDNA termini. Based upon the size and nucleotide sequence of the terminal repeats, the telomeres can be separated into four classes. T. pigmentosa, hyperangularis, and hegewischi have different telomeric repeats on the two ends of their mtDNAs. The only conserved feature of the mtDNA termini is the presence of tandem repeats. The function of the repeats might be to promote unequal crossing over during recombination, thereby overcoming the problem of telomere replication for these linear DNAs.  相似文献   

20.
Whole genome comparison has revealed the presence of short sequence repeats (also called mycobacterial interspersed repeat units and variable number tandem repeat units) used for genotyping schemes. In this study, we have used deletion analysis, single nucleotide polymorphism data and spoligotype taken from published data from others to investigate the evolution of selected repeats that form the common denominators of the majority of established schemes. Analysis of the number of repeats per locus from over 400 isolates revealed that the general trend globally appears to be loss of repeats in modern strains compared with ancestral strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号