首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Phosphatidylinositol-specific phospholipase C of murine lymphocytes   总被引:3,自引:0,他引:3  
Phosphatidylinositol-specific phospholipase C (PI-phospholipase C) was found primarily in the cytosolic fraction of murine splenic lymphocytes. However, small but significant amounts of the activity of the enzyme were detected in the microsome and plasma membrane fractions. Both the cytosolic and membrane-bound phospholipases C specifically hydrolyzed inositol phospholipids, phosphatidylinositol, phosphatidylinositol 4-phosphate, and phosphatidylinositol 4,5-bisphosphate. PI-Phospholipase C activity was detected in the cytosolic and microsome fractions from both T-cell-enriched and B-cell-enriched spleen cells. The membrane-bound enzyme was distinguishable from the cytosolic enzyme in the following properties. The cytosolic PI-phospholipase C showed optimal activity at pH 6.0 while the membrane-bound enzyme had two pH optima between pH 5.0 and 7.0. The activity of the cytosolic enzyme was first detected at 1 microM Ca2+, and maximum activity was observed at 100 microM Ca2+, while the membrane-bound PI-phospholipase C required higher Ca2+ concentrations, of millimolar order. The membrane-bound enzyme could hardly be extracted with 1 M NaCl but was extracted with 0.4% cholate.A portion of the membrane-bound PI-phospholipase C activity in the cholate extract was absorbed by concanavalin A-Sepharose and specifically eluted with an alpha-methylmannoside solution. The cytosolic enzyme, which was water soluble, did not bind to concanavalin A-Sepharose. Trypsinization of lymphocytes before subcellular fractionation caused a significant decrease in the PI-phospholipase C activity in the microsome fraction but almost no loss at all of the cytosolic enzyme activity.  相似文献   

2.
Abstract— The properties of Ca2+-dependent phosphatidylinositol-phosphodiesterase in membrane fractions and supernatants prepared from rat brain have been examined with the aim of providing firm evidence for the existence of a membrane-bound activity distinct from the soluble enzyme found in the cytosol (EC 3.1.4.10). The soluble enzyme is either stimulated or inhibited at pH 7.0 by deoxycholate depending on the ratio of detergent to substrate. The effects of deoxycholate are pH dependent and result in a shift of the enzyme optimum to a higher pH if the enzyme is assayed in the presence of deoxycholate. The soluble enzyme cannot hydrolgse membrane-bound phosphatidylinositol (in 32P-labelled rat liver microsomes) unless deoxycholate is present. The pH optimum is 6.7 for this detergent-dependent hydrolysis and this is probably dependent on the ionization of deoxycholic acid. The lactate dehydrogenase (EC 1.1.1.27) content of rat brain membrane fractions has been measured to estimate the contamination of these fractions by supernatant phosphatidylinositol-phosphodiesterase. No evidence has been found for phosphatidylinositol-phosphodiesterase activities that cannot be explained by such contamination. It is concluded that all the properties of calcium-dependent phospha-tidylinositol-phosphodicsterase in rat brain can be explained by the existence of only the solublc cyto-plasmic enzyme: no evidence confirming a distinct membrane-bound activity has been obtained.  相似文献   

3.
Abstract: Histidine decarboxylase (HD) activity was determined in high-speed fractions (100,000 g for 60 min) obtained from whole rat brain homogenates. Twenty-eight percent of the HD activity was associated with membranes, and the remaining was soluble. Several properties of the soluble and membrane-bound HD were compared. No significant differences in the values of K m for histidine and pyridoxal 5'-phosphate were observed. The solubilization of membrane-bound HD with Triton X-100 resulted in an increase of 60% over the nonsolubilized activity with no changes in the K m for substrate and cofactor. The proportion of free pyridoxal 5'-phosphate-independent activity was identical in both fractions. The soluble and membrane-bound forms of the enzyme differ slightly in their pH-activity profiles, although both enzymes showed an optimum pH near 6.5. The HD activities present in soluble and membrane fractions were determined at different postnatal ages. The soluble activity increased until day 90, whereas the membrane-bound activity became stabilized from day 20.  相似文献   

4.
The location of lipoprotein lipase activity in rat adipose tissue was studied using intact epididymal fat pads, isolated adipocytes, and lipoprotein lipase activity secreted from adipocytes as enzyme sources. The enzyme activities of these preparations were characterized by gel filtration. The method used for isolation of adipocytes had been modified to minimize activation of lipoprotein lipase during the procedures. Extracts of intact adipose tissue separated into two major lipoprotein lipase activity peaks, designated "a" and "b", the "a" fraction representing about 30 (fasted rats) to 50% (fed rats) of the total enzyme activity. An intermediate fraction (designated "i") was frequently observed. Extracts of isolated adipocytes from fed rats contained about 35% and those from fasted rats about 65% of the lipoprotein lipase activity present in intact tissue. The "b" fraction constituted 80--97% of the adipocyte lipoprotein lipase activity. In contrast, the enzyme activity secreted from the adipocytes contained only the "a" and "i" fractions. These data implicate the existance of one intracellular form of lipoprotein lipase (corresponding to the "b" fraction), different from extracellular forms of the enzyme (corresponding to fractions "a" and "i"). A transformation of the intracellular to the extracellular forms appears to occur in conjunction with secretion of enzyme from the fat cell.  相似文献   

5.
The subcellular distributions of acidic (pH 4.5) and neutral (pH 7.5) longchain triacylglycerol lipases (glycerol ester hydrolase, EC 3.1.1.3) of pig liver have been determined. The distribution of the acidic lipase closely paralleled that of the lysosomal marker enzyme, cathepsin D. Approx. 60% of the neutral lipolytic activity resided in the soluble fraction;the distribution of this activity failed to parallel that of marker enzymes for mitochondria, lysosomes, microsomes, or plasma membranes. A method has been developed for purification of the neutral lipase from the soluble fraction by ultracentrifugation. An approximate 90-fold purification was achieved, with recovery of 16% of the initial activity. The partially purified neutral lipase exhibited a pH optimum between 7.25 and 7.5. It required 30 mM emulsified triolein for optimal activity and ceased to liberate fatty acids after 30 min of incubation. The enzymatic activity was destroyed by heating at 60 degrees C. Neutral lipase was inhibited by sodium deoxycholate, Triton X-100 and iodoacetamide. The activity was not inhibited by sodium taurocholate, EDTA, heparin and diethyl-p-nitrophenyl phosphate. Neutral lipase failed to exhibit activity in assay systems specific for lipoprotein lipase, monoolein hydrolase, tributyrinase, and methyl butyrate esterase and showed little or no capacity to hydrolyze chyle chylomicrons or plasma very low density lipoproteins. It is suggested that the function of neutral lipase may be to supply the liver with fatty acids liberated from endogenously synthesized or stored triacylglycerols.  相似文献   

6.
In response to food deprivation, total myocardial lipoprotein lipase activity increased gradually over a period of 9 h. Although lipoprotein lipase exists in a functional and non-functional form in the myocardium, most of the increas in activity occurred in the functional (heparin-releasable) lipoprotein lipase fraction. The administration of colchicine, while having no effect on the increase seen in total lipoprotein lipase activity, did inhibit the increase in the functional fraction, while at the same time, caused a marked rise in the activity of the non-functional (non-releasable) fraction. In rats injected with colchicine after a 24-h fast, total lipoprotein lipase activity was not affected, but activity levels in the functional fraction declined while that in the non-functional fraction increased. These results suggest that the functional lipoprotein lipase is constantly being formed in sites not readily accessible to heparin (presumably the myocardial cells) and transported to its site of action, the surface of the endothelial cells of the capillaries. Cycloheximide administration to rats starved for 24 h caused a decline in activity in both the functional (half-life of about 2 h) and the non-functional (half-life of about 4 h) lipoprotein lipase fractions. These results suggest that the functional and non-functional lipoprotein lipase fractions may correspond to two distinct enzyme species.  相似文献   

7.
Separation of molecular species of lipoprotein lipase from adipose tissue   总被引:6,自引:0,他引:6  
When NH(4)OH-NH(4)Cl extracts of adipose acetone powder were applied to agarose gel chromatography columns, two peaks of lipoprotein lipase were eluted. The first activity peak (LPL(a)) was eluted with an elution volume of a protein of molecular weight approximately five times that of the second (LPL(b)). Addition of heparin to the eluted fractions markedly stimulated activity of LPL(a), but suppressed that of LPL(b). Both lipases had the characteristics that distinguish lipoprotein lipase from other tissue lipases: a requirement for serum for substrate activation, inhibition by 1 m NaCl, and an alkaline pH optimum (pH 8.0). It is concluded that these fractions represent two species of lipoprotein lipase.  相似文献   

8.
PURIFICATION OF PROTEIN CARBOXYMETHYLASE FROM OX BRAIN   总被引:4,自引:3,他引:1  
Abstract— The enzyme protein carboxymethylase from the soluble fraction of ox brain was purified to electrophoretic homogeneity. Brain protein carboxymethylase activity was also detected in a membrane-bound form which could only be solubilized by treatment with detergent. The solubilized membrane-bound form differed from the 'native' soluble form in that the former irreversibly lost activity on removal of the detergent. The two forms, however, have several similarities, having a molecular weight of 35,000, a K m of 2.7 × 10−6 M for S -adenosyl-L-methionine, and a pH optimum of 6.2 when ovalbumin was used as the methyl acceptor.  相似文献   

9.
1. Subcellular fractions, characterized by using morphological, compositional and enzymic markers, were prepared from rat heart tissue and cells isolated from the hearts of fed and 24 h-starved rats. 2. The lipoprotein lipase activity of fractions from whole tissue and isolated cells was determined in either fresh fractions or in acetone/diethyl ether powders of the fractions. 3. Lipoprotein lipase activity was present in all the fractions from tissue and cells, but was found to be of highest relative specific activity in the microsomal () fractions. 4. In fractions prepared from the isolated cells of hearts from starved rats the proportion of the total lipoprotein lipase present and its relative specific activity in the microsomal fraction were greater than in the equivalent fractions from fed animals. 5. The enhancement of lipoprotein lipase activity as a result of the acetone/diethyl ether powder preparation of fractions was most extensive in the microsomal fractions. 6. Investigation of the microsomal fraction showed that the lipoprotein lipase activity present was in two pools, one of which was within endoplasmic-reticulum vesicles. 7. The observations were consistent with the possibility that the cardiac-muscle cell could be the origin of the lipoprotein lipase activity functional in triacylglycerol uptake by the heart.  相似文献   

10.
Diacylglycerol lipase and kinase activities were measured in particulate and soluble fractions from rabbit aorta (intima-media) and coronary microvessels. With rabbit aorta, the hydrolysis at the sn-1 position of 1-palmitoyl-2-oleoyl-sn-glycerol had a pH optimum of 5-6 and was greater than hydrolysis at the sn-2 position (pH optimum of 6.5). Only the 2-monoacylglycerol accumulated during incubations at pH 5 and 6.5. These results are consistent with an ordered two-step reaction sequence where the fatty acid at the sn-1 position is released first, followed by the hydrolysis of the fatty acid from the 2-monoacylglycerol by a monoacylglycerol lipase with a neutral pH optimum. Lipase activity (sn-2 hydrolysis) at pH 6.5 was greater than kinase activity at all substrate concentrations. The presence of arachidonate at the sn-2 position of the diacylglycerol increased kinase activity but had little effect on lipase activity. Kinase activity was mainly particulate, whereas 50-60% of diacylglycerol lipase and 50% of monoacylglycerol lipase activity were soluble. Diacylglycerol lipase and kinase were also present in coronary microvessel preparations. Diacylglycerol lipase (sn-2 hydrolysis) activity in coronary microvessels was not enhanced by preincubation of the enzyme preparation with cAMP-dependent protein kinase.  相似文献   

11.
Endothelin converting enzyme activities in the soluble fraction of cultured bovine aortic endothelial cells were characterized. The two major endothelin converting enzyme activities were eluted from a hydrophobic chromatography column and the elution profile of the endothelin converting enzyme activities was the same as that of cathepsin D activities. These activities had a same pH optimum at pH 3.5 and were effectively inhibited by pepstatin A. Furthermore, anti-cathepsin D antiserum absorbed these activities as well as cathepsin D activity. Immunoblotting analysis using the antiserum showed the major active fractions have immunostainable components of identical molecular weights with cathepsin D. From these results, we concluded that the major endothelin converting activities in the soluble fraction of endothelial cells are due to cathepsin D. In addition to these cathepsin D activities, a minor endothelin converting enzyme activity with an optimum pH at 3.5 was found, which does not have angiotensin I generating (cathepsin D) activity from renin substrate and needs much higher concentrations of pepstatin A to inhibit the activity than cathepsin D.  相似文献   

12.
During the growth of turnip seedlings, two new lipases have been demonstrated, one with a maximum activity at pH 4.5 (acid lipase) and the other with a maxima at pH 8.6 (alkaline lipase). Many different enzymes are involved in gluconeogenesis: catalase, isocitrate lyase, malate synthetase, malate dehydrogenase, aconitase, citrate synthetase, fumarase, glycolate oxidase, phosphoenol-pyruvate carboxykinase. All of these show maximum activity coinciding with the stage in which lipid hydrolysis is maximal and when the accumulation of soluble carbohydrates has also reached its peak. The alkaline lipase as found to be located mainly in the spherosomes, whereas the glyoxysomes contained the following main activities: catalase, isocitrate lyase, malate synthetase, malate dehydrogenase and citrate synthetase. Aconitase, together with cytochrome oxidase and fumarase showed their highest activity in the mitochondria, and the presence of malate dehydrogenase, citrate synthetase and glycolate oxidase was also observed in these organelles. In the membrane-bound fraction, the activities of cytochrome reductase, glycolate oxidase and phosphoenol-pyruvate kinase were marked, although the latter enzyme was even more active in the soluble fraction.  相似文献   

13.
The activity of 4-ene-5 alpha-reductase was assayed in porcine testis homogenates and subcellular fractions, using testosterone as substrate. 'Marker' enzyme activities were utilized to indicate the purity of the subcellular fractions. 4-Ene-5 alpha-reductase activity was associated with the microsomal fraction; there was no activity in the purified nuclear fraction. Enzyme activity was higher in the testes of 6 week old pigs than those of 3 and 17 week old animals, and a range of activity was found. The enzyme was unstable when stored at -20 degrees C but the addition of albumin (0.1%, w/v) or glycerol (20%, v/v) to the buffer and storage at -70 degrees C or in liquid nitrogen ensured that maximal activity was retained for at least 35 days. In addition to 5 alpha-DHT, other 5 alpha-reduced metabolites and 4-androstenedione were formed in this reaction; NADPH was the preferred cofactor, but 40% of the 4-ene-5 alpha-reductase activity was retained when NADH was used. Solubilization of the microsomal enzyme was achieved using sodium citrate (0.1 M); 4-ene-5 alpha-reductase activity was enhanced to greater than 120% and 60% of this activity was in the soluble fraction. The optimum pH and temperature for both soluble and membrane-bound 4-ene-5 alpha-reductase were 6.9 and 32 degrees C, respectively. The mean apparent Km and Vmax were 0.6 mumol/l and 158 pmol/min/mg microsomal protein for the microsomal enzyme and 1.42 mumol/l and 212.0 pmol/min/mg soluble protein for the solubilized 4-ene-5 alpha-reductase. The estimated sedimentation coefficient was 11.6.  相似文献   

14.
The lipolytic activities of heart tissue towards full and partial acylglycerols were characterized. Tissue lysosomal, acid lipase activity (pH 4.8) was inhibited by high salt, protamine sulfate, NaF, MgATP, Triton X-100, serum and the esterase-inhibitor diethylparanitrophenyl phosphate. The tissue neutral triacylglycerol lipase activity (pH 7.4) was recovered predominantly in the microsomal and soluble fractions and exhibited essentially identical properties towards activators (serum, apolipoprotein C-II) and reagents (NaCl, Triton X-100, NaF, MgATP and diethylparanitrophenyl phosphate) relative to vascular lipoprotein lipase, except for protamine sulfate which increased the serum-stimulated neutral triacylglycerol lipase activity. Triacylglycerol hydrolysis at acid pH was incomplete, whereas at neutral pH full hydrolysis occurred. Myocardial mono- and diacylglycerol lipase activities, with pH optima of 8.0 and 7.4, respectively, were recovered in the microsomal fraction. They differed immunologically from neutral lipase and lipoprotein lipase and did not bind to heparin-Sepharose 4B. They were kinetically different, partially inhibited by NaCl and differentially affected by protamine sulfate. NaF, Triton X-100 and diethylparanitrophenyl phosphate. Our data suggest that endogenous hydrolytic activity against full and partial acylglycerols is mediated by separate enzymes.  相似文献   

15.
3T3-L1 adipocytes in culture incorporated [35S]methionine into a protein which could be immunoprecipitated with chicken antiserum to bovine lipoprotein lipase. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed this protein had an Mr of 55,000, similar to that of bovine lipoprotein lipase, and accounted for 0.1-0.5% of total protein synthesis in the adipocytes. Lipoprotein lipase protein was present in small amounts in confluent 3T3-L1 fibroblasts, and the amount increased many-fold as the cells differentiated into adipocytes. This increase was accompanied by parallel increases in cellular lipase activity and secretion. When cells were grown with [35S]methionine, the amount of label incorporated into lipoprotein lipase increased for 2 h and then leveled off. Pulse-chase experiments showed that half-life of newly synthesized lipase was about 1 h. Turnover of lipoprotein lipase in control cells involved both release to the medium and intracellular degradation. When N-linked glycosylation was blocked by tunicamycin, the cells synthesized a form of lipase that had a smaller Mr (48,000), was catalytically inactive, and was not released to the medium. Radioimmunoassay demonstrated that 3T3-L1 adipocytes contained an unexpectedly large amount of lipoprotein lipase protein. 55% of the enzyme protein in acetone/ether powder of the cells was insoluble in 50 mM NH3/NH4Cl at pH 8.1, a solution commonly used to extract lipoprotein lipase; 27% of the lipase protein was soluble but did not bind to heparin-Sepharose and had very low lipase activity; and the remaining 13% was soluble, bound to heparin-Sepharose, and had high lipolytic activity. About one-half of the lipase released spontaneously to the medium was inactive, and lipase inactivation proceeded in the medium with little loss of enzyme protein. Lipoprotein lipase released heparin, in contrast, was fully active and more stable. When protein synthesis was blocked by cycloheximide, the level of lipoprotein lipase activity in adipocytes decreased more rapidly than the amount of lipase protein in the cells. Most of the inactive lipoprotein lipase in adipocytes probably results from dissociation of active dimeric lipase, but some could be a precursor of active enzyme.  相似文献   

16.
Three fractions (one soluble and two membrane-bound) of choline acetyltransferase (ChAT) isolated from a nerve ending fraction of mouse forebrain, which have previously been reported to differ in several biochemical and physical aspects, were also found to differ in their rates of postnatal development. At 2 days of age, the activity in all three fractions was very low. Sodium phosphate buffer-soluble (cytoplasmic) ChAT activity increased significantly by 8 days of age, whereas the ChAT activity of the two membrane-bound fractions (NaCl- and Triton-soluble) did not increase until 13 days of age. These results suggested that the differences observed between the three fractions of ChAT prepared from mouse brain are not solely artifacts of the isolation procedure.  相似文献   

17.
In the CNS, histamine is a neurotransmitter that is inactivated by histamine N-methyltransferase (HNMT), a soluble enzyme localized to the cytosol of neurons and endothelial cells. However, it has not been established how extracellular histamine, a charged molecule at physiological pH, reaches intracellular HNMT. Present studies investigated two potential routes of histamine inactivation in mouse brain nerve terminal fractions (synaptosomes): (i) histamine uptake and (ii) histamine metabolism by HNMT. Intact synaptosomes demonstrated a weak temperature-dependent histamine uptake (0.098 pmol/min-mg protein), but contained a much greater capacity to metabolize histamine by HNMT (1.4 pmol/min-mg protein). Determination of the distribution of HNMT within synaptosomes revealed that synaptosomal membranes (devoid of soluble HNMT) contribute HNMT activity equivalent to intact synaptosomes (14.3 +/- 2.2 and 18.2 +/- 4.3 pmol/min-tube, respectively) and suggested that histamine-methylating activity is associated with the membrane fraction. Additional experimental findings that support this hypothesis include: (i) the histamine metabolite tele-methylhistamine (tMH) was found exclusively in the supernatant fraction following an HNMT assay with intact synaptosomes; (ii) the membrane-bound HNMT activity was shown to increase 6.5-fold upon the solubilization of the membranes with 0.1% Triton X-100; and (iii) HNMT activity from the S2 fraction, ruptured synaptosomes, and synaptosomal membranes displayed different stability profiles when stored over 23 days at - 20 degrees C. Taken together, these studies demonstrate functional evidence for the existence of membrane-bound HNMT. Although molecular studies have not yet identified the nature of this activity, the present work suggests that levels of biologically active histamine may be controlled by an extracellular process.  相似文献   

18.
Lectin-binding domains on laminin   总被引:5,自引:0,他引:5  
Chicken erythrocytes have been found to have at least two kinds of phospholipase A2. The first is a soluble enzyme from the cytosole fraction and has no calcium sensitivity. The second can be extracted from the plasma membrane fraction with the nonionic detergent Triton X-100. In this study the membrane-bound enzyme was partially purified by affinity chromatography on phosphatidylcholine-Sepharose, and its specific activity was increased 1100-fold compared with that of the cell homogenate without nuclei. It has an optimum pH of 8.5 and required calcium for maximum activity. It showed the specificity for both phosphatidylcholine and phosphatidylethanolamine, but reacted preferentially on the former substrate. Analysis by concanavalin A-Sepharose affinity chromatography revealed that the membrane-bound phospholipase A2 was retained on the resin and could be eluted specifically with a haptenic sugar, methyl alpha-D-mannopyranoside. The enzyme seems to be either a concanavalin A-binding glycoprotein or a part of a complex with certain concanavalin A-binding glycoproteins.  相似文献   

19.
The separation of rat epididymal adipocytes into plasma-membrane, mitochondrial, microsomal and cytosol fractions is described. The fractions, which were characterized by marker-enzyme analysis and electron-micrographic observation, from the cells of fed and 24 h-starved animals were used to prepare acetone/diethyl ether-dried powders for the measurement of lipoprotein lipase activities. The highest specific activities and proportion of recovered lipoprotein lipase activity were found in the plasma-membrane and microsomal fractions. The two fractions from the cells of fed rats showed similar activities and enrichments of the enzyme, these activities being higher than the plasma-membrane and lower than the microsomal activities recovered from the cells of starved animals. Chicken and guinea-pig anti-(rat lipoprotein lipase) sera were prepared, and an indirect labelled-second-antibody cellular immunoassay, using 125I-labelled rabbit anti-(chicken IgG) or 125I-labelled sheep anti-(guinea-pig IgG) antibodies respectively, for the detection of cell-surface enzyme was devised and optimized. The amount of immunodetectable cell-surface lipoprotein lipase was higher for cells isolated from fed animals than for cells from 24 h-starved animals, when either anti-(lipoprotein lipase) serum was used in the assay. The amount of immunodetectable cell-surface lipoprotein lipase fell further when starvation was extended to 48 h. The lipoprotein lipase of plasma-membrane vesicles was shown to be a patent activity and to be immunodetectable in a modification of the cellular immunoassay. Although the functional significance of the adipocyte surface lipoprotein lipase is not known, the possibility of it forming a pool of enzyme en route to the capillary endothelium is advanced.  相似文献   

20.
Abstract: Primary cultures of chromaffin cells from bovine adrenal medullae were used as a model to study lipolytic events during stimulus-secretion coupling. It has been shown that chromaffin cells liberate arachidonic acid in addition to their main secretion product, the catecholamines. To understand more about the mechanism of arachidonic acid liberation, chromaffin cells were labeled with radioactive arachidonic acid, stimulated, and then analyzed for changes in lipid composition. After stimulation with 10?4M acetylcholine, the radioactivity of triacylglycerols decreased to the same extent that the free arachidonic acid level rose. This finding suggests that in bovine chromaffin cells a stimulation-dependent triacylglycerol lipase (triacylglycerol hydrolase; EC 3.1.1.3) is involved in arachidonic acid liberation. Further work was performed on detection, characterization, and isolation of this enzyme. Triacylglycerol lipase activity was found in whole cell homogenates and in plasma membrane fractions isolated from adrenal medullary tissue. The plasma membrane lipase showed a pH optimum of 4.3. The apparent Michaelis constant was determined as 3.3 × 10?4 mol/L. Ca2+ did not influence the enzymatic activity. To differentiate the plasma membrane triacylglycerol lipase from the previously described plasma membrane diacylglycerol lipase of chromaffin cells, the influence of RG 80267, a specific diacylglycerol lipase inhibitor, was examined. RG 80267 (50 μM) inhibited the triacylglycerol lipase by only 24%, although diacylglycerol lipase was totally inhibited with only 20 μM RG 80267. The pH optimum of homogenate lipase was broad, lying between 4 and 7. Starting from the soluble fraction of whole cell homogenates, the triacylglycerol lipase was partially purified by ultracentrifugation and size-exclusion chromatography. The molecular mass of the enzyme as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis was found to be between 47 and 57 kDa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号