首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Kim SY  He Y  Jacob Y  Noh YS  Michaels S  Amasino R 《The Plant cell》2005,17(12):3301-3310
Winter-annual accessions of Arabidopsis thaliana are often characterized by a requirement for exposure to the cold of winter to initiate flowering in the spring. The block to flowering prior to cold exposure is due to high levels of the flowering repressor FLOWERING LOCUS C (FLC). Exposure to cold promotes flowering through a process known as vernalization that epigenetically represses FLC expression. Rapid-cycling accessions typically have low levels of FLC expression and therefore do not require vernalization. A screen for mutants in which a winter-annual Arabidopsis is converted to a rapid-cycling type has identified a putative histone H3 methyl transferase that is required for FLC expression. Lesions in this methyl transferase, EARLY FLOWERING IN SHORT DAYS (EFS), result in reduced levels of histone H3 Lys 4 trimethylation in FLC chromatin. EFS is also required for expression of other genes in the FLC clade, such as MADS AFFECTING FLOWERING2 and FLOWERING LOCUS M. The requirement for EFS to permit expression of several FLC clade genes accounts for the ability of efs lesions to suppress delayed flowering due to the presence of FRIGIDA, autonomous pathway mutations, or growth in noninductive photoperiods. efs mutants exhibit pleiotropic phenotypes, indicating that the role of EFS is not limited to the regulation of flowering time.  相似文献   

2.
The DNA of eukaryotes is wrapped around nucleosomes and packaged into chromatin. Covalent modifications of the histone proteins that comprise the nucleosome alter chromatin structure and have major effects on gene expression. Methylation of lysine 4 of histone H3 by COMPASS is required for silencing of genes located near chromosome telomeres and within the rDNA (Krogan, N. J, Dover, J., Khorrami, S., Greenblatt, J. F., Schneider, J., Johnston, M., and Shilatifard, A. (2002) J. Biol. Chem. 277, 10753-10755; Briggs, S. D., Bryk, M., Strahl, B. D., Cheung, W. L., Davie, J. K., Dent, S. Y., Winston, F., and Allis, C. D. (2001) Genes. Dev. 15, 3286-3295). To learn about the mechanism of histone methylation, we surveyed the genome of the yeast Saccharomyces cerevisiae for genes necessary for this process. By analyzing approximately 4800 mutant strains, each deleted for a different non-essential gene, we discovered that the ubiquitin-conjugating enzyme Rad6 is required for methylation of lysine 4 of histone H3. Ubiquitination of histone H2B on lysine 123 is the signal for the methylation of histone H3, which leads to silencing of genes located near telomeres.  相似文献   

3.
Over time and under stressing conditions proteins are susceptible to a variety of spontaneous covalent modifications. One of the more commonly occurring types of protein damage is deamidation; the conversion of asparagines into aspartyls and isoaspartyls. The physiological significance of isoaspartyl formation is emphasized by the presence of the conserved enzyme L-isoaspartyl O-methyltransferase (PIMT), whose physiological function appears to be in preventing the accumulation of deamidated proteins. Seemingly consistent with a repair function, overexpression of PIMT in Drosophila melanogaster extends lifespan under conditions expected to contribute to protein damage. Based on structural information and sequence homology we have created mutants of residues proposed to be involved in co-factor binding in Escherichia coli PIMT. Both mutants retain S-adenosyl L-methionine binding capabilities but demonstrate dramatically reduced kinetic capabilities, perhaps suggestive of catalytic roles beyond co-factor binding. As anticipated, overexpression of the wild type enzyme in E. coli results in bacteria with increased tolerance to thermal stress. Surprisingly, even greater levels of heat tolerance were observed with overexpression of the inactive PIMT mutants. The increased survival capabilities observed with overexpression of PIMT in E. coli, and possibly in Drosophila, are not due to increased isoaspartyl repair capabilities but rather a temperature-independent induction of the heat shock system as a result of overexpression of a misfolding-prone protein. An alternate hypothesis as to the physiological substrate and function of L-isoaspartyl methyltransferase is proposed.  相似文献   

4.
5.
6.
7.
8.
9.
10.
We have shown okadaic acid (OA) and calyculin-A (CLA) inhibition of mouse oocyte phosphoprotein phosphatase 1 (PPP1C) and/or phosphoprotein phosphatase 2A (PPP2CA) results in aberrant chromatin condensation, as evidenced by the inability to resolve bivalents. Phosphorylation of histone H3 at specific residues is thought to regulate chromatin condensation. Therefore, we examined changes in histone H3 phosphorylation during oocyte meiosis and the potential regulation by protein PPPs. Western blot and immunocytochemical analysis revealed histone H3 phosphorylation changed during mouse oocyte meiosis, with changes in chromatin condensation. Germinal vesicle-intact (GV-intact; 0 h) oocytes had no phospho-Ser10 but did have phospho-Ser28 histone H3. Oocytes that had undergone germinal vesicle breakdown (GVBD; 2 h) and progressed to metaphase I (MI; 7 h) and MII (16 h) had phosphorylated Ser10 and Ser28 histone H3 associated with condensed chromatin. To determine whether OA-induced aberrations in chromatin condensation were due to alterations in levels of histone H3 phosphorylation, we assessed phosphorylation of Ser10 and Ser28 residues following PPP inhibition. Oocytes treated with OA (1 microM) displayed increased phosphorylation of histone H3 at both Ser10 and Ser28 compared with controls. To begin to elucidate which OA-sensitive PPP is responsible for regulating chromatin condensation and histone H3 phosphorylation, we examined spatial and temporal localization of OA-sensitive PPPs, PPP1C, and PPP2CA. PPPC2A did not localize to condensed chromatin, whereas PPP1beta (PPP1CB) associated with condensing chromatin in GVBD, MI, and MII oocytes. Additionally, Western blot and immunocytochemistry confirmed presence of the PPP1C regulatory inhibitor subunit 2 (PPP1R2) in oocytes at condensed chromatin during meiosis and indicated a change in PPP1R2 phosphorylation. Inhibition of oocyte glycogen synthase kinase 3 (GSK3) appeared to regulate phosphorylation of PPP1R2. Furthermore, inhibition of GSK3 resulted in aberrant oocyte bivalent formation similar to that observed following PPP inhibition. These data suggest that PPP1CB is the OA/CLA-sensitive PPP that regulates oocyte chromatin condensation through regulation of histone H3 phosphorylation. Furthermore, GSK3 inhibition results in aberrant chromatin condensation and appears to regulate phosphorylation of PPP1R2.  相似文献   

11.
Trefoil factor (TFF) peptides are pivotal for gastric restitution after surface epithelial damage, but TFF cellular targets that promote cell migration are poorly understood. Conversely, Na/H exchangers (NHE) are often implicated in cellular migration but have a controversial role in gastric restitution. Using intravital microscopy to create microscopic lesions in the mouse gastric surface epithelium and directly measure epithelial restitution, we evaluated whether TFFs and NHE isoforms share a common pathway to promote epithelial repair. Blocking Na/H exchange (luminal 10 μm 5-(N-ethyl-N-isopropyl) amiloride or 25 μm HOE694) slows restitution 72-83% in wild-type or NHE1(-/-) mice. In contrast, HOE694 has no effect on the intrinsically defective gastric restitution in NHE2(-/-) mice or TFF2(-/-) mice. In TFF2(-/-) mice, NHE2 protein is reduced 23%, NHE2 remains localized to apical membranes of surface epithelium, and NHE1 protein amount or localization is unchanged. The action of topical rat TFF3 to accelerate restitution in TFF2(-/-) mice was inhibited by AMD3100 (CXCR4 receptor antagonist). Furthermore, rat TFF3 did not rescue restitution when NHE2 was inhibited [TFF2(-/-) mice +HOE694, or NHE2(-/-) mice]. HOE694 had no effect on pH at the juxtamucosal surface before or after damage. We conclude that functional NHE2, but not NHE1, is essential for mouse gastric epithelial restitution and that TFFs activate epithelial repair via NHE2.  相似文献   

12.
Martini EM  Keeney S  Osley MA 《Genetics》2002,160(4):1375-1387
To investigate the role of the nucleosome during repair of DNA damage in yeast, we screened for histone H2B mutants that were sensitive to UV irradiation. We have isolated a new mutant, htb1-3, that shows preferential sensitivity to UV-C. There is no detectable difference in bulk chromatin structure or in the number of UV-induced cis-syn cyclobutane pyrimidine dimers (CPD) between HTB1 and htb1-3 strains. These results suggest a specific effect of this histone H2B mutation in UV-induced DNA repair processes rather than a global effect on chromatin structure. We analyzed the UV sensitivity of double mutants that contained the htb1-3 mutation and mutations in genes from each of the three epistasis groups of RAD genes. The htb1-3 mutation enhanced UV-induced cell killing in rad1Delta and rad52Delta mutants but not in rad6Delta or rad18Delta mutants, which are defective in postreplicational DNA repair (PRR). When combined with other mutations that affect PRR, the histone mutation increased the UV sensitivity of strains with defects in either the error-prone (rev1Delta) or error-free (rad30Delta) branches of PRR, but did not enhance the UV sensitivity of a strain with a rad5Delta mutation. When combined with a ubc13Delta mutation, which is also epistatic with rad5Delta, the htb1-3 mutation enhanced UV-induced cell killing. These results suggest that histone H2B acts in a novel RAD5-dependent branch of PRR.  相似文献   

13.
Exchange of histones H1, H2A, and H2B in vivo   总被引:17,自引:0,他引:17  
L Louters  R Chalkley 《Biochemistry》1985,24(13):3080-3085
We have asked whether histones synthesized in the absence of DNA synthesis can exchange into nucleosomal structures. DNA synthesis was inhibited by incubating hepatoma tissue culture cells in medium containing 5.0 mM hydroxyurea for 40 min. During the final 20 min, the cells were pulsed with [3H]lysine to radiolabel the histones (all five histones are substantially labeled under these conditions). By two electrophoretic techniques, we demonstrate that histones H1, H2A, and H2B synthesized in the presence of hydroxyurea do not merely associate with the surface of the chromatin but instead exchange with preexisting histones so that for the latter two histones there is incorporation into nucleosome structures. On the other hand, H3 and H4 synthesized during this same time period appear to be only weakly bound, if at all, to chromatin. These two histones have been isolated from postnuclear washes and purified. Some possible implications of in vivo exchange are discussed.  相似文献   

14.
Protein L-isoaspartyl methyltransferase (PIMT) has been implicated in the repair or metabolism of proteins containing atypical L-isoaspartyl peptide bonds. The repair hypothesis is supported by previous studies demonstrating in vitro repair of isoaspartyl peptides via formation of a succinimide intermediate. Utilization of this mechanism in vivo predicts that PIMT modification sites should exhibit significant racemization as a side reaction to the main repair pathway. We therefore studied the D/L ratio of aspartic acid at specific sites in histone H2B, a known target of PIMT in vivo. Using H2B from canine brain, we found that Asp25 (the major PIMT target site in H2B) was significantly racemized, exhibiting d/l ratios as high as 0.12, whereas Asp51, a comparison site, exhibited negligible racemization (D/L < or = 0.01). Racemization of Asp25 was independent of animal age over the range of 2-15 years. Using H2B from 2-3-week mouse brain, we found a similar D/L ratio (0.14) at Asp25 in wild type mice, but substantially less racemization (D/L = 0.035) at Asp25 in PIMT-deficient mice. These findings suggest that PIMT functions in the repair, rather than the metabolic turnover, of isoaspartyl proteins in vivo. Because PIMT has numerous substrates in cells, these findings also suggest that D-aspartate may be more common in cellular proteins than hitherto imagined and that its occurrence, in some proteins at least, is independent of animal age.  相似文献   

15.
In eukaryotic nuclei, DNA is wrapped around a protein octamer composed of the core histones H2A, H2B, H3, and H4, forming nucleosomes as the fundamental units of chromatin. The modification and deposition of specific histone variants play key roles in chromatin function. In this study, we established an in vitro system based on permeabilized cells that allows the assembly and exchange of histones in situ. H2A and H2B, each tagged with green fluorescent protein (GFP), are incorporated into euchromatin by exchange independently of DNA replication, and H3.1-GFP is assembled into replicated chromatin, as found in living cells. By purifying the cellular factors that assist in the incorporation of H2A-H2B, we identified protein phosphatase (PP) 2C gamma subtype (PP2Cgamma/PPM1G) as a histone chaperone that binds to and dephosphorylates H2A-H2B. The disruption of PP2Cgamma in chicken DT40 cells increased the sensitivity to caffeine, a reagent that disturbs DNA replication and damage checkpoints, suggesting the involvement of PP2Cgamma-mediated histone dephosphorylation and exchange in damage response or checkpoint recovery in higher eukaryotes.  相似文献   

16.
The parasite Toxoplasma gondii expresses a 55 kDa protein or TgDRE that belongs to a novel family of proteins characterized by the presence of three domains, a human splicing factor 45-like motif (SF), a glycine-rich motif (G-patch), and a RNA recognition motif (RRM). The two latter domains are mainly known as RNA-binding domains, and their presence in TgDRE, whose partial DNA repair function was demonstrated, suggests that the protein could also be involved in the RNA metabolism. In this work, we characterized the structure and function of the different domains by using single or multidomain proteins to define their putative role. The SF45-like domain has a helical conformation and is involved in the oligomerization of the protein. The G-patch domain, mainly unstructured on its own as well as in the presence of the SF upstream and RRM downstream domains, is able to bind small RNA oligonucleotides. We also report the structure determination of the RRM domain from the NMR data. It adopts a classical betaalphabetabetaalphabeta topology consisting of a four-stranded beta sheet packed against two alpha helices but does not present the key residues for the RNA interaction. In contrast, our analysis shows that the RRM of TgDRE is not only unable to bind small RNA oligonucleotides but it also shares the protein-protein interaction characteristics with two unusual RRMs of the U2AF heterodimeric splicing factor. The presence of both RNA- and protein-binding domains seems to indicate that TgDRE could also be involved in RNA metabolism.  相似文献   

17.
How phosphorylated histone H2AX, known as gamma-H2AX, functions in the cellular response to DNA double-strand breaks is the subject of intensive investigation. Recent research in yeast and mammalian cells shows that gamma-H2AX facilitates post-replicational DNA repair by recruiting cohesin, a protein complex that holds sister chromatids together.  相似文献   

18.
19.
20.
The role of the histone pairs H2A,H2B and H3,H4 in the kinetics of core particle formation was investigated by using N-(1-pyrene)maleimide-labeled histone H3. The excimer emission intensity of a DNA-core histone complex prepared by direct mixing of DNA and histones in 0.2 m-NaCl is reduced by half when H2A,H2B is omitted. Fluorescence quenching studies and lifetime measurements indicate that the emission differences are probably due to static quenching. In a correctly folded nucleosome or a DNA-(H3,H4) complex, the two pyrene rings are buried and are held very close. DNA-(H3,H4) can interact with additional copies of H3,H4, but only when two dimers of H2A,H2B are correctly bound is there a specific twofold increase in excimer emission.The kinetics of the reaction of H3,H4 with DNA in 0.2 m-NaCl were followed by measuring the increase in 460 nm fluorescence. The apparent rate constant of the dominant kinetic component is ~ 2 × 10?1 s?1. If histones H2A,H2B are added immediately after the preparation of the DNA-(H3,H4) complex, an increase in excimer fluorescence is observed, with an apparent rate constant of ~ 6 × 10?3 s?1. However, if histones H2A,H2B are added one hour after DNA-(H3,H4) complex formation, there is no increase in excimer fluorescence. These results suggest that an intermediate involving the H3,H4 tetramer is formed first in nucleosome assembly. In the presence of H2A,H2B, this intermediate evolves to the final folded nucleosome, but in the absence of H2A,H2B it rearranges to an unmaturable dead-end complex. Additional experiments show that a very fast transfer of histone pairs (probably H2A,H2B) can take place between partially reconstituted nucleosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号