首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In a previous paper we have reported on the structural perturbation of the erythrocyte membrane anion exchanger by a regular series of model amphiphiles, as shown by differential scanning calorimetry (Gruber, H.J. and Low, P.S., Biochim. Biophys. Acta, preceding article). Now the data are interpreted by a model in which the effects of amphiphile structure upon buffer-membrane partitioning are well separated from the dependence of the intrinsic potencies of membrane-bound amphiphiles upon amphiphile structure. The buffer-membrane partitioning situation was demonstrated to regularly change between extremes within a series of homologous amphiphiles, i.e. from a negligible to a predominant fraction of total amphiphile in the sample residing in the membrane. Based upon this demonstration a large number of reports on the chain length dependence of apparent potency could be reinterpreted in terms of chain length profiles of intrinsic potency, allowing for a comparison of the responses of various membrane proteins to homologous series of amphiphiles. The response patterns for chain length variation could be divided into three distinct classes: the intrinsic potency (i) can be independent of chain length over a very wide range of length, (ii) it can be rather independent up to a critical length where a sudden cut-off in potency occurs, or (iii) it can drop monotonically over a wide range of chain length. The intrinsic potency values of saturated fatty acids in destabilizing the anion exchanger were interpreted by very simple assumptions: only direct interactions between amphiphiles and target proteins and a simple amphiphile partition equilibrium between a pool of equivalent low affinity sites on the protein and the bulk lipid matrix. The observed monotonic decay of the intrinsic potency of saturated fatty acids with increasing chain length from C8 to C20 was translated into a constant increment of free energy by which each additional CH2 favors the transfer away from sites on the protein towards the bulk lipid matrix. Arguments were presented suggesting that the direct interaction between amphiphiles and target protein is completely nonspecific for alkyl chain length while the residual specificity for shorter over longer amphiphiles is due to the higher tendency of longer chains to preferentially bind in the bulk lipid matrix. Thus a completely new role of the lipid as a competitor, rather than a mediator, was postulated.  相似文献   

2.
To evaluate the distribution of an amphiphile or its binding to membranes whose properties are affected by such binding, it is only necessary to establish to what extent the dose-response to the amphiphile depends on the membrane concentration. The measured response only needs to reflect local events. This method of evaluation does not depend on the precise shape of the dose-response curve and is particularly useful for amphiphiles devoid of properties like fluorescence or radioactivity which would allow their direct assay. In this work, we establish the validity of this approach by comparing it with direct conventional determinations. Two parameters are especially suitable for such evaluation: the perturbation of an enzyme's activity, produced by many amphiphiles, and the fluorescence quenching of membrane-embedded proteins by chromophoric amphiphiles through long-range F?rster transfer. We illustrate this approach in sarcoplasmic reticulum membranes containing Ca2(+)-ATPase as the main protein constituent. The equilibrium distribution of the antioxidant 4-nonylphenol was deduced from its inhibition of ATPase activity, whereas the equilibrium distribution of the calcium ionophore calcimycin (A23187) and of its brominated analog 4-bromo-A23187 were determined from their quenching of ATPase fluorescence. Apparent partition coefficients K* in the range of 10(5) (expressed as (moles of lipid/liter)-1) were obtained for these highly hydrophobic molecules.  相似文献   

3.
The structural properties of bacteriophage M13 during disassembly were studied in different membrane model systems, composed of a homologue series of the detergents sodium octyl sulfate, sodium decyl sulfate, and sodium dodecyl sulfate. The structural changes during phage disruption were monitored by spin-labeled electron spin resonance (ESR) and circular dichroism spectroscopy. For the purpose of ESR spectroscopy the major coat protein mutants V31C and G38C were site-directed spin labeled in the intact phage particle. These mutants were selected because the mutated sites are located in the hydrophobic part of the protein, and provide good reporting locations for phage integrity. All amphiphiles studied were capable of phage disruption. However, no significant phage disruption was detected below the critical micelle concentration of the amphiphile used. Based on this finding and the linear dependence of phage disruption by amphiphiles on the phage concentration, it is suggested that the solubilization of the proteins of the phage coat by amphiphiles starts with an attachment to and penetration of amphiphile molecules into the phage particle. The amphiphile concentration in the phage increases in proportion to the amphiphile concentration in the aqueous phase. Incorporation of the amphiphile in the phage particle is accompanied with a change in local mobility of the spin-labeled part of the coat protein and its secondary structure. With increasing the amphiphile concentration in the phage particle, a concentration is reached where the concentration of the amphiphile in the aqueous phase is around its critical micelle concentration. A further increase in amphiphile concentration results in massive phage disruption. Phage disruption by amphiphiles appears to be dependent on the phage coat mutations. It is concluded that phage disruption is dependent on a hydrophobic effect, since phage solubilization could significantly be increased by keeping the hydrophilic part of the amphiphile constant, while increasing its hydrophobic part.  相似文献   

4.
Intrinsic membrane proteins represent a large fraction of the proteins produced by living organisms and perform many crucial functions. Structural and functional characterization of membrane proteins generally requires that they be extracted from the native lipid bilayer and solubilized with a small synthetic amphiphile, for example, a detergent. We describe the development of a small molecule with a distinctive amphiphilic architecture, a "tripod amphiphile," that solubilizes both bacteriorhodopsin (BR) and bovine rhodopsin (Rho). The polar portion of this amphiphile contains an amide and an amine-oxide; small variations in this polar segment are found to have profound effects on protein solubilization properties. The optimal tripod amphiphile extracts both BR and Rho from the native membrane environments and maintains each protein in a monomeric native-like form for several weeks after delipidation. Tripod amphiphiles are designed to display greater conformational rigidity than conventional detergents, with the long-range goal of promoting membrane protein crystallization. The results reported here represent an important step toward that ultimate goal.  相似文献   

5.
Thermal stability of plasma membrane Ca2+ pump was systematically studied in three micellar systems of different composition, and related with the interactions amphiphile-protein measured by fluorescence resonance energy transfer. Thermal denaturation was characterized as an irreversible process that is well described by a first order kinetic with an activation energy of 222 ± 12 kJ/mol in the range 33–45°C. Upon increasing the mole fraction of phospholipid in the mixed micelles where the Ca2+ pump was reconstituted, the kinetic coefficient for the inactivation process diminished until it reached a constant value, different for each phospholipid species. We propose a model in which thermal stability of the pump depends on the composition of the amphiphile monolayer directly in contact with the transmembrane protein surface. Application of this model shows that the maximal pump stability is attained when 80% of this surface is covered by phospholipids. This analysis provides an indirect measure of the relative affinity phospholipid/detergent for the hydrophobic transmembrane surface of the protein (K LD ) showing that those phospholipids with higher affinity provide greater stability to the Ca2+ pump. We developed a method for directly measure K LD by using fluorescence resonance energy transfer from the membrane protein tryptophan residues to a pyrene-labeled phospholipid. K LD values obtained by this procedure agree with those obtained from the model, providing a strong evidence to support its validity. Received: 5 August 1999/Revised: 20 October 1999  相似文献   

6.
The understanding of integral membrane protein (IMP) structure and function is hampered by the difficulty of handling these proteins. Aqueous solubilization, necessary for many types of biophysical analysis, generally requires a detergent to shield the large lipophilic surfaces of native IMPs. Many proteins remain difficult to study owing to a lack of suitable detergents. We introduce a class of amphiphiles, each built around a central quaternary carbon atom derived from neopentyl glycol, with hydrophilic groups derived from maltose. Representatives of this maltose-neopentyl glycol (MNG) amphiphile family show favorable behavior relative to conventional detergents, as manifested in multiple membrane protein systems, leading to enhanced structural stability and successful crystallization. MNG amphiphiles are promising tools for membrane protein science because of the ease with which they may be prepared and the facility with which their structures may be varied.  相似文献   

7.
The interactions of octaethyleneglycol alkylethers (C10-C16), pentaethyleneglycol dodecylether, and dodecyl D-maltoside with the human erythrocyte membrane were studied. All the amphiphiles protected erythrocytes against hypotonic haemolysis. At concentrations where the amphiphiles protected erythrocytes against hypotonic haemolysis they reduced phosphate efflux. The potency of the amphiphiles, at equiprotecting concentrations, was correlated negatively to the length of the alkyl chain. Potassium fluxes were increased by all the amphiphiles at protective concentrations. The relative potency of the amphiphiles varied but it was not simply related to the length of the alkyl chain. The only amphiphile affecting active potassium influx was octaethyleneglycol decylether which induced a slight decrease. It is concluded that the increase in passive cation fluxes caused by the amphiphiles is due to an increased permeability of the lipid bilayer induced through a nonspecific interaction of the amphiphiles with the bilayer. The effect of the amphiphiles on ion transport mediated by membrane proteins is proposed to be due to an alteration of the state of the transporting protein.  相似文献   

8.
P G Scherer  J Seelig 《Biochemistry》1989,28(19):7720-7728
The influence of electric surface charges on the polar headgroups and the hydrocarbon region of phospholipid membranes was studied by mixing 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) with charged amphiphiles. A positive surface charge was generated with dialkyldimethylammonium salts and a negative surface charge with dialkyl phosphates. The POPC:amphiphile ratio and hence the surface charge density could be varied over a large range since stable liquid-crystalline bilayers were obtained even for the pure amphiphiles in water. POPC was selectively deuterated at both methylene segments of the choline moiety and at the cis double bond of the oleic acyl chain. Additional experiments were carried out with 1,2-dipalmitoyl-rac-glycero-3-phosphocholine labeled at the C-2 position of the glycerol backbone. Deuterium, phosphorus, and nitrogen-14 nuclear magnetic resonance (NMR) spectra were recorded for liquid-crystalline bilayers with varying concentrations of amphiphiles. Although the hydrocarbon region and the glycerol backbone were not significantly influenced by the addition of amphiphiles, very large perturbations of the phosphocholine headgroup were observed. Qualitatively, these results were similar to those observed previously with other cationic and anionic molecules and suggest that the electric surface charge is the essential driving force in changing the phospholipid headgroup orientation and conformation. While the P-N dipole is approximately parallel to the membrane surface in the pure phospholipid membrane, the addition of a positively charged amphiphile or the binding of cationic molecules moves the N+ end of the dipole toward the water phase, changing the orientation of the phosphate segment by more than 30 degrees at the highest amphiphile concentration.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Vectamidine is a liposome-forming double-chain cationic amphiphile. The present work was aimed to microscopically study the interactions of Vectamidine liposomes with the human erythrocyte plasma membrane. Vectamidine rapidly induced stomatocytic shapes. Attachment of Vectamidine liposomes to the erythrocyte induced a strong local invagination of the membrane. This frequently resulted in a complete encapsulation of the liposome. Liposomes composed of phosphatidylcholine (neutral) or phosphatidylserine/phosphatidylcholine (anionic) did not perturb the erythrocyte shape. Our results indicate that besides an attraction of Vectamidine liposomes to the plasma membrane, there is a preference of Vectamidine for the inner bilayer leaflet. We suggest that cationic amphiphiles may transfer from membrane-attached liposomes to the plasma membrane and then translocate to the inner bilayer leaflet where they induce a strong local inward bending of the plasma membrane resulting in an encapsulation of the liposome.  相似文献   

10.
Covalent modification of integral membrane proteins with amphiphiles may provide a general approach to the conversion of membrane proteins into water-soluble forms for biophysical and high-resolution structural studies. To test this approach, we mutated four surface residues of the pentameric Mycobacterium tuberculosis mechanosensitive channel of large conductance (MscL) to cysteine residues as anchors for amphiphile attachment. A series of modified ion channels with four amphiphile groups attached per channel subunit was prepared. One construct showed the highest water solubility to a concentration of up to 4mg/ml in the absence of detergent. This analog also formed native-like, alpha-helical homo-pentamers in the absence of detergent as judged by circular dichroism spectroscopy, size-exclusion chromatography and various light-scattering techniques. Proteins with longer, or shorter polymers attached, or proteins modified exclusively with polar cysteine-reactive small molecules, exhibited reduced to no solubility and higher-order aggregation. Electron microscopy revealed a homogeneous population of particles consistent with a pentameric channel. Solubilization of membrane proteins by covalent attachment of amphiphiles results in homogeneous particles that may prove useful for crystallization, solution NMR spectroscopy, and electron microscopy.  相似文献   

11.
Surface-active amphiphiles find applications in a wide range of areas of industry such as agrochemicals, personal care, and pharmaceuticals. In many of these applications, interaction with cell membranes is a key factor for achieving their purpose. How do amphiphiles interact with lipid membranes? What are their bases for membrane specificity? Which biophysical properties of membranes are susceptible to modulation by amphiphilic membrane-effectors? What aspects of this interaction are important for performing their function? In our work on membrane biophysics over the years, questions like these have arisen and we now share some of our findings and discuss them in this review. This topic was approached focusing on the membrane properties and their alterations rather than on the amphiphile structure requirements for their interaction. Here, we do not aim to provide a comprehensive list of the modes of action of amphiphiles of biological interest but to help in understanding them.  相似文献   

12.
Sphingosine is one of a number of cationic amphiphiles that inhibit the activity of protein kinase C (PKC) in commonly used assay conditions. This inhibition occurs only at high concentrations of this amphiphile. In the presence of excess negative charge from oleic acid, the addition of sphingosine surprisingly leads to activation of PKC. The results are explicable in terms of the dual role of charge and lipid phase propensity. When the positive charge on sphingosine is compensated by the negative charge on oleic acid, sphingosine, a hexagonal phase promoting amphiphile, becomes an activator of PKC. This does not occur with a bilayer stabilizing cationic amphiphile, N,N,N-Trimethyl-N'-cholesteryl amido-ethyl ammonium which is an inhibitor of PKC at all mol fractions, as well as in the presence of oleic acid. The results indicate that effects of sphingosine on more complex biological systems should be interpreted with caution because of this dual role of the amphiphile.  相似文献   

13.
The effect of model amphiphiles on the structural stability of the anion exchange protein (band 3) of the human erythrocyte membrane was studied by differential scanning calorimetry. The concentration of membranes, as well as the concentration, head group, alkyl chain length, degree of unsaturation, and double bond configuration of a variety of alkane derivatives were all varied in a systematic way. The depression of the denaturation temperature of band 3 per unit membrane concentration of the amphiphile was then determined in order to quantitate the potency of each drug. Saturated fatty acids of chain length C8 to C24 displayed a monotonic decrease in potency up to C20, followed by a dramatic diminution in potency at C22 and C24. Unsaturation caused only minor increases in the abilities of fatty acids to perturb the anion exchanger, and surprisingly, there was neither a trend for the number of double bonds nor a significant cis-trans distinction. Arachidonic acid, as an exception, was much more effective than any other amphiphile in destabilizing band 3. Fatty acids were about three times more potent than fatty amines and fatty alcohols; however, the enhanced partitioning of the latter into the membrane compensated at certain membrane/buffer ratios for its reduced intrinsic potency. A quantitative model interpretation of the data is presented in an accompanying paper.  相似文献   

14.
In order to morphologically characterize exo- and endovesicles released during treatment of erythrocytes with amphiphiles and to look for possible amphiphile-specific effects on the vesiculation pattern, human erythrocytes were treated at 37 degrees C with amphiphiles at concentrations where they exhibit maximum protection against hypotonic haemolysis (cAHmax). Released exo-and endovesicles and treated cells were studied by means of transmission (TEM) and scanning (SEM) electron microscopy. All sphero-echinocytogenic amphiphiles induced a release of both spherical and tubular exovesicles. Dodecyl maltoside, a nonionic amphiphile with a bulky polar head, induced a release of predominantly tubular exovesicles, while all other sphero-echinocytogenic amphiphiles induced a release of predominantly spherical exovesicles. Some branched tubular exovesicles were released by a double-chained cationic amphiphile. Tail- and tongue-like structures were often seen on the exovesicles. Spherical exovesicles were frequently invaginated. Stomatocytogenic amphiphiles induced endovesiculation. In erythrocytes treated with most of the stomatocytogenic amphiphiles the endovesicles were clustered, but with some amphiphiles the endovesicles were randomly distributed. Large ringformed endovesicles (octaethyleneglycol alkyl ethers) and endovesicles in chains (octyl and decyl glucopyranoside) also occurred. The endovesicle membrane was often budding onto the lumen of the vesicle and in some cases this could ultimately lead to a vesicle inside the endovesicle. We conclude that amphiphiles do not only trigger vesiculation, but may also specifically affect the vesiculation processes.  相似文献   

15.
Summary An insoluble complex of soluble protein (lipase fraction) and commercially available amphiphile was prepared. The extraction of protein from complex revealed that the protein interacted with amphiphile was specific. The capacity of a protein to form the insoluble complex depended on its solubility and on amphiphile used in preparing solution. It suggested that the commercially available amphiphiles might be effective for partitioning soluble protein.  相似文献   

16.
We synthesized four cationic bile acid based facial amphiphiles featuring trimethyl ammonium head groups. We evaluated the role of these amphiphiles for cytotoxic activities against colon cancer cells and their membrane interactions by varying charge, hydration and hydrophobicity. The singly charged cationic Lithocholic acid based amphiphile (LCA-TMA1) is most cytotoxic, whereas the triply charged cationic Cholic acid based amphiphile (CA-TMA3) is least cytotoxic. Light microscopy and Annexin-FITC assay revealed that these facial amphiphiles caused late apoptosis. In addition, we studied the interactions of these amphiphiles with model membrane systems by Prodan-based hydration, DPH-based anisotropy, and differential scanning calorimetry. LCA-TMA1 is most hydrophobic with a hard charge causing efficient dehydration and maximum perturbations of membranes thereby facilitating translocation and high cytotoxicity against colon cancer cells. In contrast, the highly hydrated and multiple charged CA-TMA3 caused least membrane perturbations leading to low translocation and less cytotoxicity. As expected, Chenodeoxycholic acid and Deoxycholic acid based amphiphiles (CDCA-TMA2, DCA-TMA2) featuring two charged head groups showed intermediate behavior. Thus, we deciphered that charge, hydration, and hydrophobicity of these amphiphiles govern membrane interactions, translocation, and resulting cytoxicity against colon cancer cells.  相似文献   

17.
The solubilities of two fluorescent lipid amphiphiles with comparable apolar structures and different polar head groups, NBD-hexadecylamine and RG-tetradecylamine (or -octadecylamine), were compared in lipid bilayers at a molar ratio of 1/50 at 23 degrees C. Bilayers examined were in the solid, liquid-disordered, or liquid-ordered phases. While NBD-hexadecylamine was soluble in all the examined bilayer membrane phases, RG-tetradecylamine was stably soluble only in the liquid-disordered phase. RG-tetradecylamine insolubility in solid and liquid-ordered phases manifests itself as an aggregation of the amphiphile over a period of several days and the kinetics of aggregation were studied. Solubility of these amphiphiles in the different phases examined seems to be related to the dipole moment of the amphiphile (in particular, of the polar fluorophore) and its orientation relative to the dipolar potential of the membrane. We propose that amphiphilic molecules inserted into membranes (including lipid-attached proteins) partition into different coexisting membrane phases based upon: (1) nature of the apolar structure (chain length, degree of saturation, and chain branching as has been proposed in the literature); (2) magnitude and orientation of the dipole moment of the polar portion of the molecules relative to the membrane dipolar potential; and (3) hydration forces that are a consequence of ordering of water dipoles at the membrane surface.  相似文献   

18.
Inhibition of protein kinase C by cationic amphiphiles.   总被引:6,自引:0,他引:6  
R Bottega  R M Epand 《Biochemistry》1992,31(37):9025-9030
A large number of PKC inhibitors are positively charged. We evaluated the structural features of cationic amphiphiles which are necessary for inhibiting PKC. Many of these compounds were derivatives of cholesterol, which possesses a hydrophobic backbone which does not perturb hydrocarbon packing in membrane bilayers. In addition, they contain a tertiary or quaternary nitrogen functionality in the head group. All designed cholesterol-based amphiphiles inhibit PKC activity; the potency of the amphiphile correlates with the presence of positive charge. Quaternary ammonium amphiphiles are 10-fold more potent than their tertiary amine counterparts, generally inhibiting in the 10-60 microM range using the Triton mixed micelle assay. Aside from charge, factors such as the structure of the amine-containing head group, its length from the hydrocarbon moiety, or the number of amine groups on the amphiphile did not markedly influence inhibitor potency. In contrast, the hydrocarbon backbone did influence potency: cationic amphiphiles containing a steroid backbone were more potent inhibitors of PKC than their straight-chain analogues. Changing the nature of the hydrocarbon from a sterol to an alkyl group lowers the pK of the amine head group so that the straight-chain analogues are no longer cationic in the conditions in the PKC assay. The results of these studies suggest that a combination of positive charge and a bilayer-stabilizing structural characteristic provides a basis for the rational design of PKC inhibitors.  相似文献   

19.
The dynamics of endolysosomal cholesterol were investigated in Niemann-Pick type C (NPC) cells and in human fibroblasts treated with class 2 amphiphiles to mimic NPC cells. We showed through new approaches that the massive pools of endolysosomal cholesterol in these cells are not trapped but, rather, circulate to the cell surface at about the normal rate. This flux spared NPC and amphiphile-treated cells from disruption by the extraction of their plasma membrane cholesterol with cyclodextrin. Nocodazole, a microtubule-depolymerizing agent, reversed the resistance of NPC and U18666A-treated cells to cholesterol depletion, apparently by reducing the flux of endolysosomal cholesterol to the plasma membrane. Neither nocodazole nor bafilomycin A1 (an inhibitor of the vacuolar proton pump) acted in the same way as the NPC mutation or class 2 amphiphiles: both agents decreased plasma membrane cholesterol at the expense of the endolysosomal pool and both blocked the actions of the amphiphile, U18666A. Finally, the resistance of NPC cells to lysis by amphotericin B was shown not to reflect a reduction in plasma membrane cholesterol arising from a block in lysosomal cholesterol export but rather the diversion of the amphotericin B to cholesterol-rich endolysosomes. We conclude that the large pool of endolysosomal cholesterol in NPC and amphiphile-treated fibroblasts is dynamic and that its turnover, as in normal cells, is dependent on microtubules.  相似文献   

20.
In an attempt to define the parameters in amphiphilic molecules important for their interaction with the erythrocyte membrane, the effects of cationic, anionic, zwitterionic and nonionic amphiphilic agents (C10-C16) on osmotic fragility and transport of potassium and phosphate in human erythrocytes were studied. All the amphiphiles protected the erythrocytes against hypotonic haemolysis. Half-maximum protection occurred at a concentration which was about 15% of that inducing 50% haemolysis. The concentrations of amphiphiles required to induce protection or haemolysis were related to the length of the alkyl chain in a way indicating that a membrane/aqueous phase partition is the mechanism whereby the amphiphile monomers intercalate into the membrane. At antihaemolytic concentrations all the amphiphiles increased potassium efflux and passive potassium influx. The increase in the fluxes was about the same in both directions through the membrane and there were no clear differences in the effects of the different amphiphilic derivatives at equi-protecting concentrations. Active potassium influx was decreased by cationic, zwitterionic and non-ionic amphiphiles. The ability of the amphiphiles to inhibit the influx was not related to the length of the alkyl chain. Anionic amphiphiles had no or only a weak stimulatory effect on the influx. Phosphate efflux was reduced by all the amphiphiles. The inhibitory potency of the different amphiphiles decreased in the following order; anionic greater than zwitterionic, non-ionic greater than cationic. Short-chained amphiphiles were more potent inhibitors than long-chained. The possible participation of non-bilayer phases (mixed inverted micelles) in the intercalation of amphiphiles into the membrane is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号