首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Highly hydrophobic integral membrane proteins (IMPs)are typically purified in excess detergent media, often resulting in rapid inactivation and denaturation of the protein. One promising approach to solve this problem is to couple hydrophilic polymers, such as monomethoxypolyethylene glycol (mPEG) to IMPs under mild conditions in place of detergents. However, the broad application of this approach is hampered by poor reaction efficiencies, low tolerance of detergent stabilized membrane proteins to reaction conditions, and a lack of proper site-specific reversible approaches. Here, we have developed a straightforward, efficient, and mild approach to site-specific noncovalent binding of long-chain polymers to recombinant IMPs. This method uses the hexa-histidine tag (His-Tag) often used for purification of recombinant proteins as an attachment site for mPEGs. Solubility studies performed using five different IMPs confirmed that all tested mPEG-bound IMPs were completely soluble and stable in detergent free aqueous buffer compared to their precipitated native proteins under the identical circumstances. Activity assays and circular dichroism (CD) spectroscopy confirmed the structural integrity of modified IMPs.  相似文献   

2.
Site-specific PEGylation of proteins containing unnatural amino acids   总被引:5,自引:0,他引:5  
Here, we report a generally applicable PEGylation methodology based on the site-specific incorporation of para-azidophenylalanine into proteins in yeast. The azido group was used in a mild [3+2] cycloaddition reaction with an alkyne derivatized PEG reagent to afford selectively PEGylated protein. This strategy should be useful for the generation of selectively PEGylated proteins for therapeutic applications.  相似文献   

3.
Radioiodination of proteins by reductive alkylation   总被引:1,自引:0,他引:1  
The use of the aliphatic aldehyde, para-hydroxyphenylacetaldehyde as the reactive moiety in the radioiodination of proteins by reductive alkylation is described. The para-hydroxyphenyl group is radiolabeled with 125I, reacted through its aliphatic aldehyde group with primary amino groups on proteins to form a reversible Schiff base linkage which can then be stabilized with the mild reducing agent NaCNBH3. The introduction of the methylene group between the benzene ring and the aldehyde group increases its reactivity with protein amino groups permitting efficient labeling at low aldehyde concentrations. Using this method, radioiodinated proteins with high specific activity can be produced. The reductive alkylation procedure is advantageous in that the labeling conditions are mild, the reaction is specific for lysyl residues, and the modification of the epsilon-ammonium group of lysine results in ionizable secondary amino groups avoiding major changes in protein charge.  相似文献   

4.
A photochemically active bacteriochlorophyll-protein complex (reaction center) has been isolated from the carotenoidless mutant A1a+ of Rhodopseudomonas capsulata by treatment of membranes with lauryl dimethyl amine oxide. Three proteins with molecular weights of 20,500, 24,000 and 28,000 (molar ratio 1:1:1) were detected in the reaction center preparations. After mild treatment of intracytoplasmic membranes with Na-dodecyl sulfate (0.5%, 30 degrees C, 1 min) succeeded by polyacrylamide gel electrophoresis two pigmented bands were obtained. Material of one fraction could be bleached reversibly by actinic light and contained two proteins with molecular weights of 20,500 and 24000. The second band is photochemically inactive.  相似文献   

5.
1. The synthesis of methyl 5-iodopyridine-2-carboximidate and its reaction with amino groups of model compounds and performic acid-oxidized insulin are described. The reagent was designed to introduce heavy atoms into specific sites in proteins. 2. Specific reaction with the amino groups of oxidized insulin can be achieved under reasonably mild conditions giving rise to the corresponding N-monosubstituted amidines. 3. The extent of reaction of this reagent with protein amino groups can be readily determined by difference spectroscopy. Modification of lysine residues inhibits tryptic cleavage at such residues, and this can be of assistance in establishing the site of modification in the primary structure. 4. Evidence is presented to show that methyl 5-iodopyridine-2-carboximidate can react specifically, at pH5.0, with the aromatic amino group of 3-amino-l-tyrosine; the final product of this reaction is a 2-arylbenzoxazole. 5. The use of this reagent as a general method for preparing heavy-atom isomorphous derivatives of proteins is discussed.  相似文献   

6.
Rapid synthesis of DNA-cysteine conjugates for expressed protein ligation   总被引:1,自引:0,他引:1  
We report a rapid method for the covalent modification of commercially available amino-modified DNA oligonucleotides with a cysteine moiety. The resulting DNA-cysteine conjugates are versatile reagents for the efficient preparation of covalent DNA-protein conjugates by means of expressed protein ligation (EPL). The EPL method allows for the site-specific coupling of cysteine-modified DNA oligomers with recombinant intein-fusion proteins, the latter of which contain a C-terminal thioester enabling the mild and highly specific reaction with N-terminal cysteine compounds. We prepared a cysteine-modifier reagent in a single-step reaction which allows for the rapid and near quantitative synthesis of cysteine-DNA conjugates. The latter were ligated with the green fluorescent protein mutant EYFP, recombinantly expressed as an intein-fusion protein, allowing for the mild and selective formation of EYFP-DNA conjugates in high yields of about 60%. We anticipate many applications of our approach, ranging from protein microarrays to the arising field of nanobiotechnology.  相似文献   

7.
When E. coli ribosomal subunits are reacted with 2-iminothiolane and then subjected to a mild ultraviolet irradiation, an RNA-protein cross-linking reaction occurs. About 5% of the total protein in each subunit becomes cross-linked to the RNA, and a specific sub-set of proteins is involved in the reaction. In the case of the 50S subunit, the sites of cross-linking to the 23S RNA have been determined for six of these proteins: protein L4 is cross-linked within an oligonucleotide comprising positions 613-617 in the 23S sequence, L6 within positions 2473-2481, L21 within positions 540-548, L23 within positions 137-141, L27 within positions 2332-2337 and L29 within positions 99-107.  相似文献   

8.
Food allergens are molecules, mainly proteins, that trigger immune responses in susceptible individuals upon consumption even when they would otherwise be harmless. Symptoms of a food allergy can range from mild to acute; this last effect is a severe and potentially life-threatening reaction. The European Union (EU) has identified 14 common food allergens, but new allergens are likely to emerge with constantly changing food habits. Mass spectrometry (MS) is a promising alternative to traditional antibody-based assays for quantifying multiple allergenic proteins in complex matrices with high sensitivity and selectivity. Here, the main allergenic proteins and the advantages and drawbacks of some MS acquisition protocols, such as multiple reaction monitoring (MRM) and data-dependent analysis (DDA) for identifying and quantifying common allergenic proteins in processed foodstuffs are summarized. Sections dedicated to novel foods like microalgae and insects as new sources of allergenic proteins are included, emphasizing the significance of establishing stable marker peptides and validated methods using database searches. The discussion involves the in-silico digestion of allergenic proteins, providing insights into their potential impact on immunogenicity. Finally, case studies focussing on microalgae highlight the value of MS as an effective analytical tool for ensuring regulatory compliance throughout the food control chain.  相似文献   

9.
《Free radical research》2013,47(4-5):223-229
In order to test whether a mild oxidative stress could promote the transglutaminase damaging effect on eye lens proteins, total lens soluble proteins and purified βL-crystallin have been exposed to H2O2: slowly produced by the glucose-glucose oxidase reaction. Soon after the pretreatment, the substrate capacity of the lens proteins for an exogenous transglutaminase has been evaluated. Exposure to the oxidative stress increased the susceptibility of the lens proteins to transglutaminase. When ferrous ions were added to the preincubation medium, in order to convert the H2O2 into the hydroxyl radical, the increase was more evident.  相似文献   

10.
The application of gene fusion technology for the production of heterologous proteins in Escherichia coli has required the development of specific cleavage methods to separate the coexpressed fusion protein partner from the protein of interest. When hydroxylamine is used to cleave Asn-Gly fusion protein linkages, undesirable chemical modification of asparagine and glutamine amino acids can also occur. In this study, hydroxylamine cleavage conditions were modified to minimize unwanted chemical heterogeneity that occurred during the cleavage of the fusion protein [Met(1)]-pGH(1-11)-Val-Asn-IGF-I (Long-IGF-I). The cleavage reaction was shown to be dependent on the hydroxylamine concentration, temperature, and pH. Optimal cleavage conditions were identified that resulted in very low levels of chemical heterogeneity, but under these mild conditions that cleavage of the labile Asn-Gly bond was reduced. Therefore, the reaction was further modified to improve the yield of IGF-I while minimizing chemical heterogeneity. The yield of unmodified IGF-I was improved from less than 25% to greater than 70%. Analysis of the heterogeneity produced using the modified cleavage technique showed that Asn(26) was converted to a hydroxamate. This variant was characterized in refolding and biological assays where it was equivalent to IGF-I. To further assess the effectiveness of the modified cleavage technique and to evaluate the potential for process scale-up, a gram-scale cleavage reaction of Long-IGF-I was carried out. The process yielded IGF-I with a low level of chemical heterogeneity that was easily removed by ion-exchange chromatography. Moreover, this work shows that the production of unmodified IGFs using hydroxylamine cleavage of fusion proteins is facilitated using the mild cleavage reaction. (c) 1996 John Wiley & Sons, Inc.  相似文献   

11.
1. Maleic anhydride was shown to react rapidly and specifically with amino groups of proteins and peptides. Complete substitution of chymotrypsinogen was achieved under mild conditions and the extent of reaction could be readily determined from the spectrum of the maleyl-protein. 2. Maleyl-proteins are generally soluble and disaggregated at neutral pH. Trypsin splits the blocked proteins only at arginine residues and there is frequently selectivity in this cleavage, e.g. in yeast alcohol dehydrogenase and pig glyceraldehyde 3-phosphate dehydrogenase. 3. The group is removed by intramolecular catalysis at acid pH. The half-time was 11-12hr. at 37 degrees at pH3.5 in in-maleyl-lysine or in maleyl-chymotrypsinogen. 4. The unblocking reaction can be used as the basis for a ;diagonal'-electrophoretic separation of lysine peptides and N-terminal peptides, as shown by studies with beta-melanocyte-stimulating hormone.  相似文献   

12.
13.
The site-selective modification of the proteins RNase A, lysozyme C, and the peptide hormone somatostatin is presented via a kinetically controlled labeling approach. A single lysine residue on the surface of these biomolecules reacts with an activated biotinylation reagent at mild conditions, physiological pH, and at RT in a high yield of over 90%. In addition, fast reaction speed, quick and easy purification, as well as low reaction temperatures are particularly attractive for labeling sensitive peptides and proteins. Furthermore, the multifunctional bioorthogonal bioconjugation reagent (19) has been achieved allowing the site-selective incorporation of a single ethynyl group. The introduced ethynyl group is accessible for, e.g., click chemistry as demonstrated by the reaction of RNase A with azidocoumarin. The approach reported herein is fast, less labor-intensive and minimizes the risk for protein misfolding. Kinetically controlled labeling offers a high potential for addressing a broad range of native proteins and peptides in a site-selective fashion and complements the portfolio of recombinant techniques or chemoenzymatic approaches.  相似文献   

14.
Hua L  Low TY  Sze SK 《Proteomics》2006,6(2):586-591
We have developed a rapid microwave-assisted protein digestion technique based on classic acid hydrolysis reaction with 2% formic acid solution. In this mild chemical environment, proteins are hydrolyzed to peptides, which can be directly analyzed by MALDI-MS or ESI-MS without prior sample purification. Dilute formic acid cleaves proteins specifically at the C-terminal of aspartyl (Asp) residues within 10 min of exposure to microwave irradiation. By adjusting the irradiation time, we found that the extent of protein fragmentation can be controlled, as shown by the single fragmentation of myoglobin at the C-terminal of any of the Asp residues. The efficacy and simplicity of this technique for protein identification are demonstrated by the peptide mass maps of in-gel digested myoglobin and BSA, as well as proteins isolated from Escherichia coli K12 cells.  相似文献   

15.
The reversible, oriented immobilization of proteins on solid surfaces is a prerequisite for the investigation of molecular interactions and the controlled formation of supramolecular assemblies. This paper describes a generally applicable method using a synthetic chelator thioalkane that can be self-assembled on gold surfaces. The reversible binding of an anti-lysozyme F(ab) fragment modified with a C-terminal hexahistidine extension was monitored and the apparent dissociation constants determined using surface plasmon resonance. Infra-red spectroscopy demonstrated that the secondary structure of the protein was unaffected by the immobilization process. The retention of functionality of the immobilized protein was also successfully demonstrated. Given the mild reaction conditions and reversibility, this method of oriented immobilization of proteins opens possibilities for the development of biosensors.  相似文献   

16.
Covalent protein-oligodeoxynucleotide (protein-ODN) conjugates are useful in a number of biological applications, but synthesizing discrete conjugates-where the connection between the two components is at a defined location in both the protein and the ODN-under mild conditions with significant yield can be a challenge. In this article, we demonstrate a strategy for synthesizing discrete protein-ODN conjugates using strain-promoted azide-alkyne [3+2] cycloaddition (SPAAC, a copper-free 'click' reaction). Azide-functionalized proteins, prepared by enzymatic prenylation of C-terminal CVIA tags with synthetic azidoprenyl diphosphates, were 'clicked' to ODNs that had been modified with a strained dibenzocyclooctyne (DIBO-ODN). The resulting protein-ODN conjugates were purified and characterized by size-exclusion chromatography and gel electrophoresis. We find that the yields and reaction times of the SPAAC bioconjugation reactions are comparable to those previously reported for copper-catalyzed azide-alkyne [3+2] cycloaddition (CuAAC) bioconjugation, but require no catalyst. The same SPAAC chemistry was used to immobilize azide-modified proteins onto surfaces, using surface-bound DIBO-ODN as a heterobifunctional linker. Cu-free click bioconjugation of proteins to ODNs is a simple and versatile alternative to Cu-catalyzed click methods.  相似文献   

17.
Native chemical ligation (NCL) is an emerging chemoselective chemistry that forms an amide bond by trans-thioesterification followed by intramolecular nucleophilic rearrangement between thioester and cysteine. The reaction is simple, occurs in a mild aqueous solution, and gives near-quantitative yields of a desired product. Since the first report in 1994, most studies involving the use of NCL have focused on the total synthesis of proteins to address fundamental questions pertaining to many aspects of protein science, such as folding, mirror images, and site-specific labeling of proteins, but applications of the NCL reaction for other areas remain largely unexplored. Herein, we present a facile strategy for surface immobilization of poly(ethylene glycol) (PEG) utilizing the NCL reaction. Surface immobilization of PEG (i.e., PEGylation) plays a key role in preventing nonspecific protein adsorption on surfaces, which is crucial in a wide variety of medical devices. Using cysteine-PEG and thioester-containing phosphonic acid conjugates, we achieved efficient surface PEGylation on titanium surfaces. Ellipsometry, goniometry, and X-ray photoelectron spectroscopy (XPS) unambiguously confirmed the presence of PEGs, which provided nonfouling effects of surfaces. This study indicates that the NCL reaction will be a useful toolkit for surface bioconjugation and functionalization.  相似文献   

18.
The copper(I) catalyzed azide-alkyne cycloaddition 'click' reaction yields a specific product under mild conditions and in some of the most chemically complex environments. This reaction has been used extensively to tag DNA, proteins, glycans and only recently RNA. Click reactions in aqueous buffer typically include a ligand for Cu(I), however we find that acetonitrile as a minor co-solvent can serve this role. Here we investigate the click labeling of RNA and DNA in aqueous buffer to determine the relationship between the stoichoimetry of Cu(I) and the acetonitrile co-solvent that affects nucleic acid stability. We find that very low concentrations of acetonitrile perform equally well and obviate the need for any additional Cu(I) stabilizing ligand. These pseudo-ligandless reaction conditions are optimal for nucleic acids click conjugations.  相似文献   

19.
Protein kinase activity was demonstrated on the cell surface of a murine macrophage-like cell line, J774.1 cells, and was characterized in detail. When intact cells were incubated with [γ-32P]ATP, a transfer of [32P]phosphate into acid-insoluble materials of the cells occurred. This reaction was Mg2+-dependent but cAMP-independent, and Mg2+ could be substituted for by Mn2+. The reaction products were found to be proteins, as revealed by SDS-polyacrylamide gel electrophoresis and autoradiography, with phosphomonoester linkages to serine and threonine residues, but not to tyrosine. The results of experiments with chemical and enzymatic treatments as well as Con A-Sepharose column chromatography ruled out the possibility that an acyl-phosphate linkage or phosphomannosylglycopeptide was present in the reaction products. The protein kinase(s) and the reaction products were located on the cell surface of the cells, as shown by the fact that the products were removed by mild trypsinization of cells carefully controlled so that the cells remained in an intact state. Phosphorylation of exogenous proteins (phosvitin and casein) by intact cells further supported the location of the enzyme. The phosphorylated proteins of the cells were found to be metabolically stable and remained on the cell surface even at 120 min after the phosphorylation reaction. Possible roles of ecto-protein kinase activity in macrophage functions and macrophage-activation are also discussed.  相似文献   

20.
We present a novel fully hydrophilic, hydrolytically degradable poly(ethylene glycol) (PEG) hydrogel suitable for soft tissue engineering and delivery of protein drugs. The gels were designed to overcome drawbacks associated with current PEG hydrogels (i.e., reaction mechanisms or degradation products that compromise protein stability): the highly selective and mild cross‐linking reaction allowed for encapsulating proteins prior to gelation without altering their secondary structure as shown by circular dichroism experiments. Further, hydrogel degradation and structure, represented by mesh size, were correlated to protein release. It was determined that polymer density had the most profound effect on protein diffusivity, followed by the polymer molecular weight, and finally by the specific chemical structure of the cross‐linker. By examining the diffusion of several model proteins, we confirmed that the protein diffusivity was dependent on protein size as smaller proteins (e.g., lysozyme) diffused faster than larger proteins (e.g., Ig). Furthermore, we demonstrated that the protein physical state was preserved upon encapsulation and subsequent release from the PEG hydrogels and contained negligible aggregation or protein–polymer adducts. These initial studies indicate that the developed PEG hydrogels are suitable for release of stable proteins in drug delivery and tissue engineering applications. Biotechnol. Bioeng. 2011; 108:197–206. © 2010 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号