首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tyrosine (Tyr) is an essential amino acid in phenylketonuria (PKU) because of the limited hydroxylation of phenylalanine (Phe) to Tyr. The recommended intakes for Tyr in PKU are at least five times the recommended phenylalanine intakes. This suggests that Phe and Tyr contribute approximately 20 and 80%, respectively, of the aromatic amino acid (AAA) requirement (REQ). In animals and normal humans, dietary Tyr was shown to spare 40-50% of the Phe requirement, proportions that reflect dietary and tissue protein composition. We tested the hypothesis that the Tyr REQ in PKU would account for 45% of the total AAA REQ by indicator amino acid oxidation (IAAO). Tyr REQ was determined in five children with PKU by examining the effect of varying dietary Tyr intake on lysine oxidation and the appearance of (13)CO(2) in breath (F(13)CO(2)) under dietary conditions of adequate energy, protein (1.5 g x kg(-1) x day(-1)), and phenylalanine (25 mg x kg(-1) x day(-1)). Lysine oxidation and F(13)CO(2) were determined using a primed 4-h oral equal-dose infusion of L-[1-(13)C]lysine. Lysine oxidation and F(13)CO(2) decreased linearly as Tyr intake increased, to a break point that was interpreted as the mean dietary Tyr requirement (16.3 and 19.2 mg x kg(-1) x day(-1), respectively). At Tyr intakes of >16.3 and 19.2 mg x kg(-1) x day(-1), lysine oxidation and F(13)CO(2), respectively, were low and constant. This represents 40.4 and 44.4%, respectively, of the total AAA intake. The current recommendations for Tyr intake in PKU patients appear to be overestimated by a factor of approximately 5. This study is the first application of the IAAO technique in a pediatric population and in humans with an inborn error of metabolism.  相似文献   

2.
Maple syrup urine disease (MSUD) is an autosomal recessive disorder caused by defects in the mitochondrial multienzyme complex branched-chain alpha-keto acid dehydrogenase (BCKD; EC 1.2.4.4), responsible for the oxidative decarboxylation of the branched-chain ketoacids (BCKA) derived from the branched-chain amino acids (BCAA) leucine, valine, and isoleucine. Deficiency of the enzyme results in increased concentrations of the BCAA and BCKA in body cells and fluids. The treatment of the disease is aimed at keeping the concentration of BCAA below the toxic concentrations, primarily by dietary restriction of BCAA intake. The objective of this study was to determine the total BCAA requirements of patients with classical MSUD caused by marked deficiency of BCKD by use of the indicator amino acid oxidation (IAAO) technique. Five MSUD patients from the MSUD clinic of The Hospital for Sick Children participated in the study. Each was randomly assigned to different intakes of BCAA mixture (0, 20, 30, 50, 60, 70, 90, 110, and 130 mg.kg(-1).day(-1)), in which the relative proportion of BCAA was the same as that in egg protein. Total BCAA requirement was determined by measuring the oxidation of l-[1-(13)C]phenylalanine to (13)CO(2). The mean total BCAA requirement was estimated using a two-phase linear regression crossover analysis, which showed that the mean total BCAA requirement was 45 mg.kg(-1).day(-1), with the safe level of intake (upper 95% confidence interval) at 62 mg.kg(-1).day(-1). This is the first time BCAA requirements in patients with MSUD have been determined directly.  相似文献   

3.
4.
《Luminescence》2002,17(3):158-164
Although most amino acids readily react with hypochlorous acid (HOCl), only the reaction involving tryptophan (Trp) produces a measurable chemiluminescence (CL). Most of this luminescence takes place after total consumption of HOCl when the process is carried out in an excess of Trp. The quantum yield of the process is relatively low (2 × 10?8 Einstein/mol HOCl reacted). The luminescence is attributed to free radical‐mediated secondary reactions of the initially produced chloramines. This is supported by experiments showing that the chloramines produced when HOCl reacts with alanine are able to induce Trp chemiluminescence, and that this luminescence is partially quenched by free radical scavengers. The spectral changes and the effect of pH upon the observed luminescence are compatible with light emission from products produced in the free radical oxidation of Trp. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

5.
  • 1.1. So far, tyrosine has been considered non-essential for growth and cell multiplication in Tetrahymena pyriformis and T. thermophila.
  • 2.2. This report shows, however, that tyrosine becomes essential if phenylalanine becomes limiting.
  • 3.3. The results indicate that two different transport systems are involved in uptake of tyrosine and phenylalanine.
  相似文献   

6.
7.
We have investigated oxidation of amino acid phenylhydrazides by mushroom tyrosinase in the presence of 4-tert-butylcatechol and N-acetyl-L-tyrosine. Spectrophotometric measurements showed gradual disappearance of 4-tert-butyl-o-benzoquinone, generated by oxidation of 4-tert-butylcatechol with sodium periodate, after addition of amino acid phenylhydrazides. However, the presence of the phenylhydrazides did not influence the concentration of 4-tert-butyl-o-benzoquinone formed during enzymatic oxidation. Oxygen consumption measurements demonstrated that in a mixture both compounds were oxidized but the reaction rate was proportional to the concentration of the catechol. In the oxidation of N-acetyl-L-tyrosine addition of phenylhydrazides shortened the lag period, indicating that they acted as reducing agents, converting N-acetyl-L-dopaquinone to N-acetyl-L-dopa. In HPLC analysis of the oxidation 4-tert-butylcatechol and the phenylhydrazide of Boc-tryptophan only the N-protected amino acid and 4-tert-butyl-o-benzoquinone were detected as final products. In the presence of the natural substrates the oxidation of amino acid phenylhydrazides required much smaller amounts of the enzyme and was up to 40 times faster than the reaction carried out without these compounds. These results demonstrate that tyrosinase can oxidize phenylhydrazides indirectly through o-quinones. This reaction explains the inhibitory effect of agaritine, a natural amino acid hydrazide, on melanin formation and the inhibitory effects of other hydrazine derivatives on tyrosinase described in the literature.  相似文献   

8.
Branched-chain amino acid transaminase activity, branched-chain α-keto acid dehydrogenase activity, and leucine oxidation were measured in homogenates and slices of several rat tissues. Transaminase activity was highest in heart, while dehydrogenase activity was highest in liver. Leucine oxidation in isolated tissues may be limited by either transaminase or dehydrogenase activity depending upon the relative activities of these two enzymes in the tissue. The results suggest that, as the load of branched-chain amino acids increases, the liver may become an increasingly important site for the degradation of branched-chain α-keto acids.  相似文献   

9.
Energy requirement for amino acid uptake inSaccharomyces cerevisiae   总被引:1,自引:0,他引:1  
The uptake of glycine and α-aminoisobutyric acid by baker’s yeast was substantially increased by preincubation withd-glucose,d-fructose, sucrose, and maltose, but much less with ethanol or acetate. The increments in uptake are in rough agreement with the intracellular amount of acid-non-extractable high-energy phosphate (probably polyphosphate). The energy for amino acid transport is thus provided predominantly by the nonmitochondrial catabolic processes.  相似文献   

10.
11.
The sequence requirement of the ACGT-containing abscisic acid response element (ABRE) was analyzed by systematically substituting the bases surrounding the ACGT-core of motif A, the principal ABRE of the rice gene, OSEM: This was done within the context of a 55-bp promoter fragment that minimally confers ABA-responsiveness to a heterologous promoter. Based on this analysis, the sequence requirement of the ACGT-containing ABRE was determined as ACGTG G/T C, which matched very well with the consensus derived from sequence comparison of ABA-responsive promoters.  相似文献   

12.
A number of metal-catalyzed oxidation (MCO) systems mediate the oxidative inactivation of enzymes. This oxidation is accompanied by conversion of the side chains of some amino acid residues to carbonyl derivatives (for review, see Stadtman, E. R. (1986) Trends Biochem. Sci. 11, 11-12). To identify the amino acid residues which are sensitive to MCO oxidation, several enzymes/proteins and amino acid homopolymers were exposed to various MCO systems. The carbonyl groups which were formed were converted to their corresponding 3H-labeled hydroxy derivatives. After acid hydrolysis, the labeled free amino acids were separated by ion exchange chromatography. Each protein or polymer gave rise to several different labeled amino acids. The elution profiles of the labeled amino acids obtained from preparations of Escherichia coli glutamine synthetase which had been oxidized by MCO systems comprised of either Fe(II)/O2 or ascorbate/Fe(II)/O2 both in the presence and absence of EDTA were qualitatively the same. From a comparison of the elution profiles of labeled amino acids from various proteins with those obtained from homopolymers, it is evident that the side chains of histidine, arginine, lysine, and proline are particularly sensitive to oxidation by the MCO systems. This conclusion is supported also by direct amino acid analysis of acid hydrolysates which shows that the oxidation of glutamine synthetase, enolase, and phosphoglycerate kinase is associated with the loss of at least 1 histidine residue per subunit. From the results of studies with homopolymers, it is apparent that glutamic semialdehyde is a major product of both proline and arginine residues. In addition, hydroxyproline and unlabeled glutamic acid were identified among the hydrolysis products of oxidized poly-L-proline, and unlabeled aspartic acid was identified as a product of poly-L-histidine oxidation.  相似文献   

13.
The molecular chaperone GroEL is required for bacterial growth under all conditions, mediating folding assistance, via its central cavity, to a diverse set of cytosolic proteins; yet the subcellular localization of GroEL remains unresolved. An earlier study, using antibody probing of fixed Escherichia coli cells, indicated colocalization with the cell division protein FtsZ at the cleavage furrow, while a second E. coli study of fixed cells indicated more even distribution throughout the cytoplasm. Here, for the first time, we have examined the spatial distribution of GroEL in living cells using incorporation of a fluorescent unnatural amino acid into the chaperone. Fluorescence microscopy indicated that GroEL is diffusely distributed, both under normal and stress conditions. Importantly, the present procedure uses a small, fluorescent unnatural amino acid to visualize GroEL in vivo, avoiding the steric demands of a fluorescent protein fusion, which compromises proper GroEL assembly. Further, this unnatural amino acid incorporation avoids artifacts that can occur with fixation and antibody staining.  相似文献   

14.
15.
16.
The accumulation of UV photolysis products of amino acids tyrosine and tryptophan, which possess antioxidant activity, has been studied by the method of luminol-dependent chemiluminescence. The amount of antioxidant products was judged by the value of the total antioxidant potential of a UV-irradiated solution, the measure of which was the distance between the peaks of the chemiluminescence curve in the system 2,2′-azo-bis(2-amidinopropane) hydrochloride + luminol with a UV-irradiated and an unirradiated sample (induction period, τ i ). Simultaneously, the absorption and fluorescence spectra of unirradiared and UV-irradiated amino acid solutions were recorded. It was shown that exposure of a tryptophan solution to radiation led to accumulation of a fluorescent product N-formyl kynurenine (λem = 325 nm, λmax = 440 nm), and the curve of its accumulation was similar to the growth of antioxidant potential. When a tyrosine solution was irradiated, the main fluorescent product was dityrosine (λem = 310 nm, λmax = 415 nm). Nevertheless, the dose dependences of the formation of dityrosine and the total antioxidant potential were completely different. It was found that another product of tyrosine UV photolysis, dihydroxyphenylalanine, possessed pronounced antioxidant activity. It was concluded that the main antioxidant produced under UV irradiation of tryptophan is formyl kynurenine, and under irradiation of tyrosine it is dihydroxyphenylalanine.  相似文献   

17.
The accumulation of UV photolysis products of amino acids tyrosine and tryptophan, which possess an antioxidant activity, has been studied by the method of luminol-activated chemiluminescence. The amount of antioxidant products was judged by the value of the total antioxidant potential of a UV-irradiated solution, the measure of which was the distance between the peaks of the chemiluminescence curve in the system 2,2'-azo-bis(2-amidinopropane)hydrochloride + luminol in a UV-irradiated and an unirradiated samples (induction period, tau(i)). Simultaneously, the absorption and fluorescence spectra of unirradiared and UV-irradiated amino acid solutions were recorded. It was shown that, upon the exposure of a tryptophan solution to radiation, the accumulation of the fluorescent product N-formyl kynurenine (lambda(em) = 325 nm, lambda(max) = 440 nm) occures, and the curve of its accumulation was similar to the curve of growth of tau(i) photoproducts produced during UV-radiation. When a tyrosine solution was irradiated, the main fluorescent product was dityrosine (lambda(em) = 310 nm, lambda(max) = 415 nm). Nevertheless, the dose dependencies of the formation of dityrosine, and the total antioxidant potential (tau(i)) were completely different. It was found that another product of tyrosine UV-photolysis, dioxyphenylalanine, possessed a pronounced antioxidant activity. It was concluded that the main antioxidants produced under UV-irradiation of tryptophan is formyl kynurenine, and under the irradiation of tyrosine, dioxyphenylalanine.  相似文献   

18.
The International Network of Feed Information Centers (INFIC) database contains amino acid profiles of over 15000 feedstuffs prepared by various techniques by the countries of the world. Preliminary filtering of appropriate feedstuffs which might be used in fish feed formulations has generated a data base of over 100 commonly used ingredients. Many of these have digestibility coefficients for protein and some have amino acid digestibility coefficients listed. The data base is faulted by the variety of techniques used to measure amino acid profiles, and by many ingredients which have not had digestibility coefficients for the protein component determined. This data base is now being re-examined by the National Research Council to generate more exact values for the indispensable and dispensable amino acids present in feedstuffs. It is anticipated that the base will be further improved by cooperating laboratories specifically interested in amino acid profiles of various fish feed formulas. Regardless of these deficiencies, the existing INFIC data base and the scheduled improved one should provide fish feed formulae, chemical amino acid profiles, for least cost and for research diet functions. These data will form a first proximation for satisfying dietary requirements for various fish species used in nutritional requirement studies.  相似文献   

19.
20.
Stadtman ER  Levine RL 《Amino acids》2003,25(3-4):207-218
Summary. We summarize here results of studies designed to elucidate basic mechanisms of reactive oxygen (ROS)-mediated oxidation of proteins and free amino acids. These studies have shown that oxidation of proteins can lead to hydroxylation of aromatic groups and aliphatic amino acid side chains, nitration of aromatic amino acid residues, nitrosylation of sulfhydryl groups, sulfoxidation of methionine residues, chlorination of aromatic groups and primary amino groups, and to conversion of some amino acid residues to carbonyl derivatives. Oxidation can lead also to cleavage of the polypeptide chain and to formation of cross-linked protein aggregates. Furthermore, functional groups of proteins can react with oxidation products of polyunsaturated fatty acids and with carbohydrate derivatives (glycation/glycoxidation) to produce inactive derivatives. Highly specific methods have been developed for the detection and assay of the various kinds of protein modifications. Because the generation of carbonyl derivatives occurs by many different mechanisms, the level of carbonyl groups in proteins is widely used as a marker of oxidative protein damage. The level of oxidized proteins increases with aging and in a number of age-related diseases. However, the accumulation of oxidized protein is a complex function of the rates of ROS formation, antioxidant levels, and the ability to proteolytically eliminate oxidized forms of proteins. Thus, the accumulation of oxidized proteins is also dependent upon genetic factors and individual life styles. It is noteworthy that surface-exposed methionine and cysteine residues of proteins are particularly sensitive to oxidation by almost all forms of ROS; however, unlike other kinds of oxidation the oxidation of these sulfur-containing amino acid residues is reversible. It is thus evident that the cyclic oxidation and reduction of the sulfur-containing amino acids may serve as an important antioxidant mechanism, and also that these reversible oxidations may provide an important mechanism for the regulation of some enzyme functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号