首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The objective of this study was to verify the effect of 2 periodized resistance training (RT) methods on the evolution of 1-repetition maximum (1RM) and 8RM loads. Twenty resistance trained men were randomly assigned to 2 training groups: linear periodization (LP) group and daily undulating periodization (DUP) group. The subjects were tested at baseline and after 12 weeks for 1RM and 8RM loads in leg press (LEG) and bench press (BP) exercises. The training program was performed in alternated sessions for upper (session A: chest, shoulder and triceps) and lower body (session B: leg, back and biceps). The 12-week periodized training was applied only in the tested exercises, and in the other exercises, 3 sets of 6-8RM were performed. Both groups exhibited significant increases in 1RM loads on LEG and BP, but no statistically significant difference between groups was observed. The same occurred in 8RM loads on LEG and BP. However, DUP group presented superior effect size (ES) in 1RM and 8RM loads for LEG and BP exercises when compared to the LP group. In conclusion, periodized RT can be an efficient method for increasing the strength and muscular endurance in trained individuals. Although there was no statistically significant difference between periodization models, DUP promoted superior ES gains in muscular maximal and submaximal strength.  相似文献   

2.
The purpose of this study was to compare linear periodization (LP) and daily undulating periodization (DUP) for strength gains. Twenty men (age = 21 +/- 2.3 years) were randomly assigned to LP (n = 10) or DUP (n = 10) groups. One repetition maximum (1RM) was recorded for bench press and leg press as a pre-, mid-, and posttest. Training involved 3 sets (bench press and leg press), 3 days per week. The LP group performed sets of 8 RM during weeks 1-4, 6 RM during weeks 4-8, and 4 RM during weeks 9-12. The DUP group altered training on a daily basis (Monday, 8 RM; Wednesday, 6 RM; Friday, 4 RM). Analysis of variance with repeated measures revealed statistically significant differences favoring the DUP group between T1 to T2 and T1 to T3. Making program alterations on a daily basis was more effective in eliciting strength gains than doing so every 4 weeks.  相似文献   

3.
The purpose of the present investigation was to determine if significant differences exist among 3 different periodization programs in eliciting changes in strength. Twenty-eight recreationally trained college-aged volunteers (mean +/- SD; 22.29 +/- 3.98) of both genders were tested for bench press, leg press, body fat percentage, chest circumference, and thigh circumference during initial testing. After initial testing, subjects were randomly assigned to 1 of 3 training groups: (a) linear periodization (n = 9), (b) daily undulating periodization (n = 10), or (c) weekly undulating periodization (n = 9). The training regimen for each group consisted of a 9-week, 3-day-per-week program. Training loads were assigned as heavy (90%, 4 repetition maximum [4RM]), medium (85%, 6RM), or light (80%, 8RM) for bench press and leg press exercises. Subjects were familiarized with the CR-10 rated perceived exertion scale and instructed to achieve an 8 or 9 on the final repetition of each set for all other exercises. Subjects were then retested after 4 weeks of training. Training loads were then adjusted according to the new 1RM. Subjects were then retested after 5 more weeks of exercise. For all subjects, significant (p < 0.05) increases in bench press and leg press strength were demonstrated at all time points (T1-T3). No significant differences (p > 0.05) were observed between groups for bench press, leg press, body fat percentage, chest circumference, or thigh circumference at all time points. These results indicate that no separation based on periodization model is seen in early-phase training.  相似文献   

4.
This crossover study was conducted to investigate the effects of a 1-set and 3-set strength training program. The subjects were untrained men and women who were randomly signed into 1 of 3 groups: 10 subjects trained during the first 9 weeks (training period 1) with 1 set and 8-12 repetitions per set. After the break (9 weeks), they trained with 3 sets and 8-12 repetitions in training period 2. Twelve subjects started with the 3-set program and continued with the 1-set regime after the break. The control group (n = 7) did not train. The subjects were tested on 1 repetition maximum (1RM) for the biceps curl, leg press (unilateral: left and right), and bench press. Analysis of the data was done in a sampled manner for each strength training program (1-set and 3-set). The 1-set (n = 22) and 3-set (n = 22) programs led to significantly (p < 0.05) improved 1RM performances in every exercise. The relative improvements (%) for the 1RM were significantly higher during the 3-set program for the biceps curl and the bench press compared with the 1-set program. The control group exhibited no changes in any of the tested parameters over the course of this study. The design of this study allowed insight into the effects of different strength training volume without any genetical variations. The same subjects improved their 1RM during the 3-set program by 2.3 kg (biceps curl; corresponding effect size = 0.24), 8.9 kg (leg press right; 0.30), 10.9 kg (leg press left; 0.28), and 2.5 kg (bench press; 0.09) more than during the 1-set program. Depending on the goals of each trainee, these differences between the effects of different strength training volumes indicate that it may be worth spending more time on working out with a 3-set strength training regime.  相似文献   

5.
The purpose of this study was to compare linear periodization (LP), daily undulating periodization (DUP), and reverse linear periodization (RLP) for gains in local muscular endurance and strength. Sixty subjects (30 men, 30 women) were randomly assigned to LP, DUP, or RLP groups. Maximal repetitions at 50% of the subject's body weight were recorded for leg extensions as a pretest, midtest, and posttest. Training involved 3 sets (leg extensions) 2 days per week. The LP group performed sets of 25 repetition maximum (RM), 20RM, and 15RM changing every 5 weeks. The RLP group progressed in reverse order (15RM, 20RM, 25RM), changing every 5 weeks. The DUP group adjusted training variables between each workout (25RM, 20RM, 15RM repeated for the 15 weeks). Volume and intensity were equated for each training program. No significant differences were measured in endurance gains between groups (RLP = 73%, LP = 56%, DUP = 55%; p = 0.58). But effect sizes (ES) demonstrated that the RLP treatment (ES = 0.27) was more effective than the LP treatment (control) and the DUP treatment (ES = -0.02) at increasing muscular endurance. Therefore, it was concluded that making gradual increases in volume and gradual decreases in intensity was the most effective program for increasing muscular endurance.  相似文献   

6.
The purpose of this investigation was to compare the effects of single-set strength training and 3-set strength training during the early phase of adaptation in 18 untrained male subjects (age, 20-30 years). After initial testing, subjects were randomly assigned to either the 3L-1U group (n = 8), which trained 3 sets in leg exercises and 1 set in upper-body exercises, or the 1L-3U group (n = 10), which trained 1 set in leg exercises and 3 sets in upper-body exercises. Testing was conducted at the beginning and at the end of the study and consisted of 2 maximal isometric tests (knee extension and bench press) and 6 maximal dynamic tests (1 repetition maximum [1RM] tests). Subjects trained 3 days per week for 6 weeks. After warm-up, subjects performed 3 leg exercises and 4 upper-body exercises. In both groups, each set consisted of 7 repetitions (reps) with the load supposed to induce muscular failure after the seventh rep (7RM load). After 6 weeks of training, 1RM performance in all training exercises was significantly increased (10-26%, p < 0.01) in both groups. The relative increase in 1RM load in the 3 leg exercises was significantly greater in the 3L-1U group than in the 1L-3U group (21% vs. 14%, p = 0.01). However, the relative increase in 1RM load in the 3 upper-body exercises was similar in the 3L-1U group (16%) and the 1L-3U group (14%). These results show a superior adaptation to 3-set strength training, compared with 1-set strength training, in leg exercises but not in upper-body exercises during the early phase of adaptation.  相似文献   

7.
8.
The purpose of this study was to compare the effects of single- and multiple-set strength training on hypertrophy and strength gains in untrained men. Twenty-one young men were randomly assigned to either the 3L-1UB group (trained 3 sets in leg exercises and 1 set in upper-body exercises; n = 11), or the 1L-3UB (trained 1 set in leg exercises and 3 sets in upper-body exercises; n = 10). Subjects trained 3 days per week for 11 weeks and each workout consisted of 3 leg exercises and 5 upper-body exercises. Training intensity varied between 10 repetition maximum (RM) and 7RM. Strength (1RM) was tested in all leg and upper-body exercises and in 2 isokinetic tests before training, and after 3, 6, 9, and 11 weeks of training. Cross sectional area (CSA) of thigh muscles and the trapezius muscle and body composition measures were performed before training, and after 5 and 11 weeks of training. The increase in 1RM from week 0 to 11 in the lower-body exercises was significantly higher in the 3L-1UB group than in the 1L-3UB group (41 vs. 21%; p < 0.001), while no difference existed between groups in upper-body exercises. Peak torque in maximal isokinetic knee-extension and thigh CSA increased more in the 3L-1UB group than in the 1L-3UB group (16 vs. 8%; p = 0.03 and 11 vs. 7%; p = 0.01, respectively), while there was no significant difference between groups in upper trapezius muscle CSA. The results demonstrate that 3-set strength training is superior to 1-set strength training with regard to strength and muscle mass gains in the leg muscles, while no difference exists between 1- and 3-set training in upper-body muscles in untrained men.  相似文献   

9.
Some research suggests that strength improvements are greater when resistance training continues to the point at which the individual cannot perform additional repetitions (i.e., repetition failure). Performing additional forced repetitions after the point of repetition failure and thus further increasing the set volume is a common resistance training practice. However, whether short-term use of this practice increases the magnitude of strength development with resistance training is unknown and was investigated here. Twelve basketball and 10 volleyball players trained 3 sessions per week for 6 weeks, completing either 4 x 6, 8 x 3, or 12 x 3 (sets x repetitions) of bench press per training session. Compared with the 8 x 3 group, the 4 x 6 protocol involved a longer work interval and the 12 x 3 protocol involved higher training volume, so each group was purposefully designed to elicit a different number of forced repetitions per training session. Subjects were tested on 3- and 6-repetition maximum (RM) bench press (81.5 +/- 9.8 and 75.9 +/- 9.0 kg, respectively, mean +/- SD), and 40-kg Smith Machine bench press throw power (589 +/- 100 W). The 4 x 6 and 12 x 3 groups had more forced repetitions per session (p < 0.01) than did the 8 x 3 group (4.1 +/- 2.6, 3.1 +/- 3.5, and 1.2 +/- 1.8 repetitions, respectively), whereas the 12 x 3 group performed approximately 40% greater work and had 30% greater concentric time. As expected, all groups improved 3RM (4.5 kg, 95% confidence limits, 3.1- 6.0), 6RM (4.7 kg, 3.1-6.3), bench press throw peak power (57 W, 22-92), and mean power (23 W, 4-42) (all p < or = 0.02). There were no significant differences in strength or power gains between groups. In conclusion, when repetition failure was reached, neither additional forced repetitions nor additional set volume further improved the magnitude of strength gains. This finding questions the efficacy of adding additional volume by use of forced repetitions in young athletes with moderate strength training experience.  相似文献   

10.
The purpose of this study was to investigate the importance of training leading to repetition failure in the performance of 2 different tests: 6 repetition maximum (6RM) bench press strength and 40-kg bench throw power in elite junior athletes. Subjects were 26 elite junior male basketball players (n = 12; age = 18.6 +/- 0.3 years; height = 202.0 +/- 11.6 cm; mass = 97.0 +/- 12.9 kg; mean +/- SD) and soccer players (n = 14; age = 17.4 +/- 0.5 years; height = 179.0 +/- 7.0 cm; mass = 75.0 +/- 7.1 kg) with a history of greater than 6 months' strength training. Subjects were initially tested twice for 6RM bench press mass and 40-kg Smith machine bench throw power output (in watts) to establish retest reliability. Subjects then undertook bench press training with 3 sessions per week for 6 weeks, using equal volume programs (24 repetitions x 80-105% 6RM in 13 minutes 20 seconds). Subjects were assigned to one of two experimental groups designed either to elicit repetition failure with 4 sets of 6 repetitions every 260 seconds (RF(4 x 6)) or allow all repetitions to be completed with 8 sets of 3 repetitions every 113 seconds (NF(8 x 3)). The RF(4 x 6) treatment elicited substantial increases in strength (7.3 +/- 2.4 kg, +9.5%, p < 0.001) and power (40.8 +/- 24.1 W, +10.6%, p < 0.001), while the NF(8 x 3) group elicited 3.6 +/- 3.0 kg (+5.0%, p < 0.005) and 25 +/- 19.0 W increases (+6.8%, p < 0.001). The improvements in the RF(4 x 6) group were greater than those in the repetition rest group for both strength (p < 0.005) and power (p < 0.05). Bench press training that leads to repetition failure induces greater strength gains than nonfailure training in the bench press exercise for elite junior team sport athletes.  相似文献   

11.
The purpose of the current study was to compare the effect of 3 different rest intervals on multiple sets of the bench press exercise performed with heavy vs. light loads. Sixteen resistance-trained men performed 2 testing sessions each week for 3 weeks. During the first testing session each week, 5 consecutive sets of the bench press were performed with 80% of 1 repetition maximum (1RM) and with a 1-, 2-, or 3-minute rest interval between sets. During the second testing session each week the same procedures were repeated with 50% of 1RM. The total repetitions completed and the sustainability of repetitions were compared between rest conditions and between loads. For each load, resting 3 minutes between sets resulted in significantly greater total repetitions vs. resting 2 minutes (p = 0.000) or 1 minute (p = 0.000) between sets. However, the sustainability of repetitions was not significantly different between loads (p = 0.849). These results can be applied to weekly bench press workouts that undulate between heavy (i.e., 80% 1RM) and light (i.e., 50% 1RM) intensities. When the training goal is maximal strength development, 3 minutes of rest should be taken between sets to avoid significant declines in repetitions. The ability to sustain repetitions while keeping the intensity constant may result in a higher training volume and consequently greater gains in muscular strength.  相似文献   

12.
The purpose of the present study was to examine the influence of direct supervision on muscular strength, power, and running speed during 12 weeks of resistance training in young rugby league players. Two matched groups of young (16.7 +/- 1.1 years [mean +/- SD]), talented rugby league players completed the same periodized resistance-training program in either a supervised (SUP) (N = 21) or an unsupervised (UNSUP) (N = 21) environment. Measures of 3 repetition maximum (3RM) bench press, 3RM squat, maximal chin-ups, vertical jump, 10- and 20-m sprints, and body mass were completed pretest (week 0), midtest (week 6), and posttest (week 12) training program. Results show that 12 weeks of periodized resistance training resulted in an increased body mass, 3RM bench press, 3RM squat, maximum number of chin-ups, vertical jump height, and 10- and 20-m sprint performance in both groups (p < 0.05). The SUP group completed significantly more training sessions, which were significantly correlated to strength increases for 3RM bench press and squat (p < 0.05). Furthermore, the SUP group significantly increased 3RM squat strength (at 6 and 12 weeks) and 3RM bench press strength (12 weeks) when compared to the UNSUP group (p < 0.05). Finally, the percent increase in the 3RM bench press, 3RM squat, and chin-up(max) was also significantly greater in the SUP group than in the UNSUP group (p < 0.05). These findings show that the direct supervision of resistance training in young athletes results in greater training adherence and increased strength gains than does unsupervised training.  相似文献   

13.
This study compared SuperSlow resistance training (SRT) to traditional resistance training (TRT) during early phase adaptations in strength, aerobic capacity, and flexibility in college-aged women. Subjects were randomly assigned to SRT (n = 14); TRT (n = 13); or control (CON; n = 8) groups. To equalize training times, TRT trained 3 times per week for 25 minutes each session, whereas SRT trained twice a week for 35 minutes each session. Both groups trained for 4 weeks, whereas the CON group maintained normal daily activities. Workouts consisted of 5 exercises: shoulder press, chest press, leg press, low row, and lat pull down. The SRT group completed 1 set of each exercise at 50% 1RM until momentary failure with a 10-second concentric and a 10-second eccentric phase. The TRT group completed 3 sets of 8 repetitions at 80% 1RM for each exercise, with 4 seconds of contraction time for each repetition. Groups were statistically similar at baseline. There was a significant (p ≤ 0.01) time main effect for flexibility with the greatest improvements occurring for the training groups (SRT 14.7% and TRT 11%). All strength tests had significant (p ≤ 0.01) time main effects but no group or group by time interactions. Both training groups had large percent improvements in strength compared to CON, but the large variability associated with the SRT group resulted in only the TRT group being significantly different from the CON group. In conclusion, percent improvements were similar for the TRT and SRT groups, but only the TRT group reached statistical significance for the strength improvements, and both groups were equally effective for improving flexibility.  相似文献   

14.
This study examined the effects of a progressive resistance training program in addition to soccer training on the physical capacities of male adolescents. Eighteen soccer players (age: 12-15 years) were separated in a soccer (SOC; n = 9) and a strength-soccer (STR; n = 9) training group and 8 subjects of similar age constituted a control group. All players followed a soccer training program 5 times a week for the development of technical and tactical skills. In addition, the STR group followed a strength training program twice a week for 16 weeks. The program included 10 exercises, and at each exercise, 2-3 sets of 8-15 repetitions with a load 55-80% of 1 repetition maximum (1RM). Maximum strength ([1RM] leg press, bench-press), jumping ability (squat jump [SJ], countermovement jump [CMJ], repeated jumps for 30 seconds) running speed (30 m, 10 x 5-m shuttle run), flexibility (seat and reach), and soccer technique were measured at the beginning, after 8 weeks, and at the end of the training period. After 16 weeks of training, 1RM leg press, 10 x 5-m shuttle run speed, and performance in soccer technique were higher (p < 0.05) for the STR and the SOC groups than for the control group. One repetition maximum bench press and leg press, SJ and CMJ height, and 30-m speed were higher (p < 0.05) for the STR group compared with SOC and control groups. The above data show that soccer training alone improves more than normal growth maximum strength of the lower limps and agility. The addition of resistance training, however, improves more maximal strength of the upper and the lower body, vertical jump height, and 30-m speed. Thus, the combination of soccer and resistance training could be used for an overall development of the physical capacities of young boys.  相似文献   

15.
The purpose of this study was to examine 10 weeks of creatine monohydrate (Cr) supplementation coupled with resistance training on body composition and strength in women trainees. Twenty-six subjects ingested Cr (n = 13) or a placebo (Pl) (n = 13) at a dose of 0.3 g.kg(-1) and 0.03 g.kg(-1) body mass for the initial 7 days and subsequent 9 weeks, respectively, while performing a resistance training program 4 days per week. Significant increases (p < 0.05) occurred in both groups for lean body mass and 1 repetition maximum (1RM) bench press and incline leg press. There was a significant main effect for training, but there was no significant difference in the total number of repetitions completed after 5 sets of multiple repetitions to exhaustion at 70% of 1RM for bench press and incline leg press for both groups or in the ability to perform a greater training volume (sets x repetitions x load) in the Cr vs. Pl groups over the 10 weeks. The results indicate that Cr supplementation combined with 10 weeks of concurrent resistance training may not improve strength or lean body mass greater than training only. These findings may be a result of nonresponders due to gender differences or a varying biological potential to uptake Cr within the muscle.  相似文献   

16.
Circuit training effectively reduces the time devoted to strength training while allowing an adequate training volume to be achieved. Nonetheless, circuit training has traditionally been performed using relatively low loads for a relatively high number of repetitions, which is not conducive to maximal muscle size and strength gain. This investigation compared physical performance parameters and cardiovascular load during heavy-resistance circuit (HRC) training to the responses during a traditional, passive rest strength training set (TS). Ten healthy subjects (age, 26 +/- 1.6 years; weight, 80.2 +/- 8.78 kg) with strength training experience volunteered for the study. Testing was performed once weekly for 3 weeks. On day 1, subjects were familiarized with the test and training exercises. On the subsequent 2 test days, subjects performed 1 of 2 strength training programs: HRC (5 sets x (bench press + leg extensions + ankle extensions); 35-second interset rest; 6 repetition maximum [6RM] loads) or TS (5 sets x bench press; 3-minute interset rest, 6RM loads). The data confirm that the maximum and average bar velocity and power and the number of repetitions performed of the bench press in the 2 conditions was the same; however, the average heart rate was significantly greater in the HRC compared to the TS condition (HRC = 129 +/- 15.6 beats x min(-1), approximately 71% maximum heart rate (HRmax), TS = 113 +/- 13.1 beats x min(-1), approximately 62% HRmax; P < 0.05). Thus, HRC sets are quantitatively similar to traditional strength training sets, but the cardiovascular load is substantially greater. HRC may be an effective training strategy for the promotion of both strength and cardiovascular adaptations.  相似文献   

17.
The purpose of this study was to examine the effects of medicine ball training on the strength and power in young female handball athletes. Twenty-one young female handball players (age, 16.9 ± 1.2 years) were randomly assigned to experimental and control groups. Experimental group (n = 11) participated in a 12-week medicine ball training program incorporated into the regular training session, whereas controls (n = 10) participated only in the regular training. Performance in the medicine ball throws in standing and sitting positions, 1 repetition maximum (1RM) bench and shoulder press, and power test at 2 different loads (30 and 50% of 1RM) on bench and shoulder press were assessed at pre- and posttraining testing. The athletes participating in the medicine ball training program made significantly greater gains in all medicine ball throw tests compared with the controls (p < 0.01). Also, the experimental group made significantly greater gains in bench and shoulder press power than control group (p < 0.05). Both training groups (E) and (C) significantly (p < 0.05) increased 1RM bench and shoulder strength, with no differences observed between the groups. Additionally, medicine ball throw tests showed stronger correlation with power tests, than with 1RM tests. These data suggest that 12-week medicine ball training, when incorporated into a regular training session, can provide greater sport-specific training improvements in the upper body for young female handball players.  相似文献   

18.
The purposes for this study were to investigate effects of acute whole-body vibration (WBV) exposure and exercise order on bat speed and to examine relationship between muscular strength and bat speed. All participants were recreationally trained men (n = 16; 22 ± 2 years; 181.4 ± 7.4 cm; 84.7 ± 9 kg), with previous baseball experience and were tested for 1 repetitive maximum (1RM) strength in squat and bench press. Subjects then participated in 4 randomized sessions on separate days, each consisting of 3 sets of 5 bat swings. Exercises (upper and lower body dynamic and static movements related to bat swing) with or without WBV exposure were performed after sets 1 and 2. Trials were as follows: no-exercise Control (CTRL), upper body followed by lower body exercises without WBV (Arm-Leg NOVIB), upper body followed by lower body exercises with WBV (Arm-Leg VIB), and lower body followed by upper body exercises with WBV (Leg-Arm VIB). Bat speed was recorded during each swing and averaged across sets. Statistical analyses were performed to assess differences across sets and trials. Linear regressions analyzed relationship between strength and bat speed. A significant relationship existed between bat speed and lower body strength (r = 0.406, p = 0.008) but not for upper body strength. The exercise order of Arm-Leg VIB significantly increased bat speed by 2.6% (p = 0.02). Performing identical order of exercises without vibration (Arm-Leg NOVIB) significantly decreased bat speed by 2% (p = 0.039). It was concluded that adding vibration exposure to total-body exercises can provide acute enhancements in bat speed. Additionally, leg strength was shown to influence bat speed suggesting that increasing leg strength may enhance bat speed.  相似文献   

19.
The purpose of this study was to identify whether there was a relationship between relative strength during a 1 repetition maximum (1RM) back squat and 5-, 10-, and 20-m sprint performances in both trained athletes and recreationally trained individuals. Professional rugby league players (n = 24) and recreationally trained individuals (n = 20) participated in this investigation. Twenty-meter sprint time and 1RM back squat strength, using free weights, were assessed on different days. There were no significant (p ≥ 0.05) differences between the well-trained and recreationally trained groups for 5-m sprint times. In contrast, the well-trained group's 10- and 20-m sprint times were significantly quicker (p = 0.004; p = 0.002) (1.78 + 0.06 seconds; 3.03 + 0.09 seconds) compared with the recreationally trained group (1.84 + 0.07 seconds; 3.13 + 0.11 seconds). The athletes were significantly stronger (170.63 + 21.43 kg) than the recreationally trained individuals (135.45 + 30.07 kg) (p = 0.01); however, there were no significant differences (p > 0.05) in relative strength between groups (1.78 + 0.27 kg/kg; 1.78 + 0.33 kg/kg, respectively). Significant negative correlations were found between 5-m sprint time and relative squat strength (r = -0.613, power = 0.96, p = 0.004) and between relative squat strength and 10- and 20-m sprint times in the recreationally trained group (r = -0.621, power = 0.51, p = 0.003; r = -0.604, power = 0.53, p = 0.005, respectively). These results, indicating that relative strength, are important for initial sprint acceleration in all athletes but more strongly related to sprint performance over greater distances in recreationally trained individuals.  相似文献   

20.
The purpose of this study was to investigate the effectiveness of 4 weeks of low-intensity resistance training with blood-flow occlusion on upper and lower body muscular hypertrophy and muscular strength in National Collegiate Athletic Association Division IA football players. There were 32 subjects (average age 19.2 ± 1.8 years) who were randomized to an occlusion group or control group. The athletes performed 4 sets of bench press and squat in the following manner with or without occlusion: 30 repetitions of 20% predetermined 1 repetition maximum (1RM), followed by 3 sets of 20 repetitions at 20% 1RM. Each set was separated by 45 seconds. The training duration was 3 times per week, after the completion of regular off-season strength training. Data collected included health history, resting blood pressure, pretraining and posttraining bench press and squat 1RM, upper and lower chest girths, upper and lower arm girths, thigh girth, height, and body mass. The increases in bench press and squat 1RM (7.0 and 8.0%, respectively), upper and lower chest girths (3 and 3%, respectively), and left upper arm girth were significantly greater in the experiment group (p < 0.05). Occlusion training could provide additional benefits to traditional strength training to improve muscular hypertrophy and muscular strength in collegiate athletes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号