首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The determination of organophosphate and carbamate pesticides was carried out using cobalt phthalocyanine-modified carbon epoxy composite electrodes coupled with acetylcholinesterase or butyrylcholinesterase. Covalent immobilization of enzymes on Immobilon membranes or nylon nets was examined; the highest sensitivity to inhibitors was found for the nylon net containing low enzyme loading and this was subsequently used for the construction of an amperometric biosensor for pesticides. Analyses were done using acetyl- or butyrylthiocholine as substrates; thiocholine produced by hydrolysis in the enzyme membrane was electrochemically oxidized at +300 mV (vs. Ag/AgCl reference). The decrease of substrate steady-state current caused by the addition of pesticide was used for evaluation. With this approach, 1.5 and 8.4 micrograms l-1 of paraoxon and heptenophos, respectively, can be detected in less than 3 min. These detection limits are similar as those obtained when analyses were performed using free cholinesterase and 10 min incubation with inhibitor.  相似文献   

2.
The previous few decades have seen the development of biosensors and their use in monitoring of pesticides in food and environmental samples. Although inhibition‐based biosensors have been subject of several recent research works, their performance characteristics greatly depend on the type of immobilization and the presence of interfering compounds in the samples. Moreover, sensitivity, detection limits, and rapidity of the response are few of the other major features that need to be investigated further if they are to become operationally user‐friendly. This review will highlight research carried out in the past on biosensors that are based on enzyme inhibition for determination of organophosphorus compounds and carbamate pesticides.  相似文献   

3.
We report an analytical method using a thin film electro-acoustic resonator for the detection of organophosphorus pesticides. The acetylcholinesterase (AChE) enzyme was immobilized on the surface of the resonator. In the presence of organophosphorus compounds, the degree of inhibitory effect of organophosphorus compounds on the AChE activity and the concentration of pesticides were detected in real time by measuring the frequency shift of the resonator. The proposed device has a remarkably low detection limit of 1.8×10(-11)M and obvious advantages such as small size, simple operation, and integrated circuit compatibility, providing a promising tool for pesticide analysis.  相似文献   

4.
Affinity proteins were covalently immobilised on silicon microchips with overall dimensions of 13.1 x 3.2 mm, comprising 42 porous flow channels of 235 microm depth and 25 microm width, and used to develop microfluidic immunosensors based on horseradish peroxidase (HRP), catalysing the chemiluminescent oxidation of luminol/p-iodophenol (PIP). Different hydrophilic polymers with long flexible chains (polyethylenimine (PEI), dextran (DEX), polyvinyl alcohol, aminodextran) and 3-aminopropyltriethoxysilane (APTS) were employed for modification of the silica surfaces followed by attachment of protein A or G. The resulting immunosensors were compared in an affinity capture assay format, where the competition between the labelled antigen and the analyte for antibody-binding sites took place in the bulk of the solution. The formed immunocomplexes were then trapped by the microchip affinity capture support and the amount of bound tracer was monitored by injection of luminol, PIP and H2O2. All immunosensors were capable of detecting atrazine at the sub-microg l(-1) level. The most sensitive assays were obtained with PEI and DEX polymer modified supports and immobilised protein G, with limits of detection of 0.006 and 0.010 microg l(-1), and IC50 values of 0.096 and 0.130 microg l(-1), respectively. The protein G based immunosensors were regenerated with 0.4 M glycine-HCl buffer pH 2.2, with no loss of activity observed for a storage and operating period of over 8 months. To estimate the applicability of the immunosensors to the analysis of real samples, PEI and DEX based protein G microchips were used to detect atrazine in surface water and fruit juice, spiked with known amounts of the atrazine, giving recovery values of 87-102 and 88-124% at atrazine fortification levels of 0.5-3 and 80-240 microg l(-1), respectively.  相似文献   

5.
A sulfite oxidase (SO(X)) (EC 1.8.3.1) purified from Syzygium cumini leaves was immobilized onto carboxylated gold coated magnetic nanoparticles (Fe(3)O(4)@GNPs) electrodeposited onto the surface of a gold (Au) electrode through N-ethyl-N'-(3-dimethylaminopropyl) carbodiimide (EDC)-N-hydroxy succinimide (NHS) chemistry. An amperometric sulfite biosensor was fabricated using SO(X)/Fe(3)O(4)@GNPs/Au electrode as working electrode, Ag/AgCl as standard and Pt wire as auxiliary electrode. The working electrode was characterized by Fourier Transform Infrared (FTIR) Spectroscopy, Cyclic Voltammetry (CV), Scanning Electron Microscopy (SEM) and Electrochemical Impedance Spectroscopy (EIS) before and after immobilization of SO(X). The biosensor showed optimum response within 2s when operated at 0.2V (vs. Ag/AgCl) in 0.1 M Tris-HCl buffer, pH 8.5 and at 35 °C. Linear range and detection limit were 0.50-1000 μM and 0.15 μM (S/N=3) respectively. Biosensor was evaluated with 96.46% recovery of added sulfite in red wine and 1.7% and 3.3% within and between batch coefficients of variation respectively. Biosensor measured sulfite level in red and white wines. There was good correlation (r=0.99) between red wines sulfite value by standard DTNB (5,5'-dithio-bis-(2-nitrobenzoic acid)) method and the present method. Enzyme electrode was used 300 times over a period of 4 months, when stored at 4 °C. Biosensor has advantages over earlier biosensors that it has excellent electrocatalysis towards sulfite, lower detection limit, higher storage stability and no interference by ascorbate, cysteine, fructose and ethanol.  相似文献   

6.
Organophosphorus pesticide toxicology is normally evaluated in relation to inhibition of cholinesterases (acetyl and butyryl), neuropathy target esterase, and carboxylesterases, with less attention given to other physiologically important hydrolases. This study considers the relative organophosphate sensitivities of the aforementioned serine hydrolases compared with purified blood-clotting factors (thrombin, plasmin, and kallikrein) and digestive enzymes (alpha-chymotrypsin, trypsin, and elastase), assayed under similar conditions. Inhibitors that we examined are organophosphorus insecticides or their activated metabolites (paraoxon, chlorpyrifos oxon, and profenofos) and other toxicants (phenyl saligenin cyclic phosphonate and tribufos) for comparison with values that are found in the literature for the fluorophosphonates (isoflurophate and sarin). Thrombin is the most sensitive blood-clotting factor with IC-50 values of 19 to 160 microM for tribufos, the cyclic phosphonate, isoflurophate, and profenofos; plasmin and kallikrein are less affected (IC-50 >100 microM). Alpha-Chymotrypsin, trypsin, and elastase are most sensitive to the cyclic phosphonate (IC-50 1.3-15 microM) and less so to isoflurophate, sarin, and profenofos (IC-50 values from 3.6 to greater than 100 microM). The cholinesterases, carboxylesterase, and neuropathy target esterase are the most sensitive to inhibition with IC-50 values for the insecticides of less than 0.001 to 0.6, 0.002 to 0.009, and 0.15 to 100 microM, respectively. The generally low potency of these organophosphates for blood-clotting factors and digestive enzymes suggests that associated toxic effects are unlikely at sublethal doses.  相似文献   

7.
To determine the quantity of free amino acids, the D- and L-forms separately, is an important task in modern nutritional studies. The aim of our present work was to develop rapid, routine methods for fast determination of the different forms of free amino acids. We utilized two enzymes (L-amino acid oxidase, D-amino acid oxidase) with broad specificity. In our home-made reactors, the enzymes were immobilized in a thin-layer Plexi-cell on natural protein membrane. The enzyme-cell was built into a FIA system and the hydrogen peroxide generated during the enzymatic reaction was determined by an amperometric detector. The electrode potential was fixed at +100 mV. The parameters for the biochemical and electrochemical reactions were optimized in each case. The optimal pH value for measuring L- and D-amino acids was found ca. 8.8 and 9.5, respectively. The LAO reactor could be used for more than 900 measurements, while the DAO reactor for about 1000 measurements. The working concentration range was between 0.1-3 and 0.2-3 mM, respectively. The same standard solution (L- and D-Methionine, 1 mM) was injected 25 times sequentially and the standard deviations were 2 and 2.7%, respectively. After determining the optimal parameters, the specificity of the immobilized enzyme preparations towards different amino acids and in samples from different stages of brewing was investigated.  相似文献   

8.
9.
Moraxella sp., a native soil organism that grows on p-nitrophenol (PNP), was genetically engineered for the simultaneous degradation of organophosphorus (OP) pesticides and p-nitrophenol (PNP). The truncated ice nucleation protein (INPNC) anchor was used to target the pesticide-hydrolyzing enzyme, organophosphorus hydrolase (OPH), onto the surface of Moraxella sp., alleviating the potential substrate uptake limitation. A shuttle vector, pPNCO33, coding for INPNC-OPH was constructed and the translocation, surface display, and functionality of OPH were demonstrated in both E. coli and Moraxella sp. However, whole cell activity was 70-fold higher in Moraxella sp. than E. coli. The resulting Moraxella sp. degraded organophosphates as well as PNP rapidly, all within 10 h. The initial hydrolysis rate was 0.6 micromol/h/mg dry weight, 1.5 micromol/h/mg dry weight, and 9.0 micromol/h/mg dry weight for methyl parathion, parathion, and paraoxon, respectively. The possibility of rapidly degrading OP pesticides and their byproducts should open up new opportunities for improved remediation of OP nerve agents in the future.  相似文献   

10.
We prepared a new inorganic sorbent based on modified triazine (2-[4,6-bis (aminoethylamine)-1,3,5-triazine]-Silasorb; BAT-Silasorb) which binds pea seedlings amine oxidase (PSAO) very tightly without loss of its catalytic activity. This unique feature as well as the wide substrate specificity of PSAO was successfully utilised in the construction of an amperometric biosensor based on a carbon paste electrode for the fast and sensitive detection of various amines at a formal potential 0 mV versus Ag/AgCl reference electrode. The reaction layer of the biosensor is created by the direct immobilisation of PSAO at the electrode surface via affinity carrier BAT-Silasorb. Used arrangement facilitates a simple restoration of the inactive biosensor. An amperometric signal results from horseradish peroxidase catalysed reduction of H2O2, a secondary product of the oxidative deamination of amines, catalysed by PSAO. The sensor was used for the basic characterisation of 55 biogenic and synthetic amines, from numerous mono-, di- and polyamines to various hydroxy-, thio-, benzyl- and aromatic derivatives in order to establish its suitability as a postcolumn detector. Its high sensitivity to putrescine 20.0 +/- 0.64 mA l-1 per mol (636.9 +/- 2.03 mA l-1 per mol per cm2), a limit of detection of 10 nmol l-1 (determined with respect to a signal-to-noise ratio 3:1), a linear range of current response to 0.01-100 mumol l-1 concentration of substrate and good reproducibility all indicate that the sensor could be applied to future industrial and clinical analyses.  相似文献   

11.
An acetylcholinesterase (AChE) based amperometric bioelectrode for a selective detection of low concentrations of organophosphorus pesticides has been developed. The amperometric needle type bioelectrode consists of a bare cavity in a PTFE isolated Pt-Ir wire, where the AChE was entrapped into a photopolymerised polymer of polyvinyl alcohol bearing styrylpyridinium groups (PVA-SbQ). Cyclic voltammetry, performed at Pt and AChE/Pt disk electrodes, confirmed the irreversible, monoelectronic thiocholine oxidation process and showed that a working potential of +0.410 V vs. Ag/AgCl, KCl sat was suitable for a selective and sensitive amperometric detection of thiocholine. The acetylthiocholine detection under enzyme kinetic control was found in the range of 0.01-0.3 U cm ?2 of immobilised AChE. The detection limit, calculated for an inhibition ratio of 10%, was found to reach 5 μM for dipterex and 0.4 μM for paraoxon. A kinetic analysis of the AChE-pesticide interaction process using Hanes-Woolf or Lineweaver-Burk linearisations and secondary plots allowed identification of the immobilised enzyme inhibition process as a mixed one (non/uncompetitive) for both dipterex and paraoxon. The deviation from classical Michaelis Menten kinetics induced from the studied pesticides was evaluated using Hill plots.  相似文献   

12.
Carbonic anhydrase (CA) I and II are soluble isozymes that represent the major nonhemoglobin proteins in the erythrocyte. We recently identified a deficiency of CA II as the enzymatic basis for the autosomal recessive syndrome of osteopetrosis with renal tubular acidosis and cerebral calcification. Virtual absence of the CA II peak on high-performance liquid chromatography, of CA II esterase activity, and of immunoprecipitable CA II were demonstrated on extracts of red cell lysates from all patients studied. Reduced levels of CA II were found in obligate heterozygotes. Here, we present evidence that CA II in red cell lysates can be quantitated by measuring CO2 hydratase activity in the presence of inhibitors that selectively inhibit the activity of CA I to a much greater extent than that of CA II. This was done with iodide (anion binding) and bromopyruvic acid (alkylation), and the respective assays evaluated as diagnostic tools for CA II deficiency in human red cells. These techniques greatly simplify the quantitation of CA II in hemolysates and should make genetic diagnosis and counseling for the newly described inborn error of metabolism due to CA II deficiency generally available. They also allow quantitation of CA I in red cell lysates.  相似文献   

13.
By extending functional primers attached to a solid phase and incorporating a digoxigenin label, it is possible to visualise PCR products as discrete spots on specific regions of a solid support after colorimetric detection. The technique has been used for the detection of the point mutation associated with porcine malignant hyperthermia.  相似文献   

14.
After consideration of its electrophoretic behaviour, amino acid composition and phosphate content, bovine alpha s0 casein has been shown to differ from alpha s1 casein only in respect of its phosphate content. The presence in alpha s0 casein of one phosphate residue more than occurs in alpha s1 casein was confirmed by comparative degradative studies performed on both proteins. From these it was concluded that alpha s0 casein may be considered as being alpha s1 casein which has been modified by phosphorylation of the seryl residue located at position 41.  相似文献   

15.
High-performance liquid chromatography using pellicular quaternary amine-bonded resins was used to separate a variety of neutral, sialylated, and phosphorylated oligosaccharides. At pH 4.6, sialylated compounds were separated according to number of negative charges, sialic acid linkage [alpha(2,3) compared to alpha(2,6)], and position of sialic acid linkage along a linear saccharide chain. At pH 13, the neutral sugar portion of the sialylated chain had a significant effect on the separation, due to oxyanion formation. Specifically, sialylated tetrasaccharides containing the Gal beta(1,3)GlcNAc sequence were retained much more than their Gal beta(1,4)GlcNAc- or Gal-beta(1,4)GalNAc-sialylated counterparts. Linear phosphorylated oligosaccharides could be completely separated according to number of charges and net carbohydrate content. Partial separation of linear-chain positional isomers, differing in either location of Man-6-PO4 in the chain or linkage position of Man or Man-6-PO4, was accomplished. Branched-chain phosphorylated compounds could be completely separated according to which antennae contained the Man-6-PO4. The electrochemical current generated by oxidation of sialylated, phosphorylated, and neutral oligosaccharides was compared to that of a glucose. The relative molar response factors for neutral, sialylated, and phosphorylated oligosaccharides ranged from 0.2 to 3.2. Neutral oligosaccharides gave the following molar responses for each group of structurally related compounds: (1) mono- and disaccharide, 1-1.3; (2) linear tri- and tetrasaccharides, 1.5-2.0; and (3) branched pentasaccharide-nonasaccharides, 2.4-3.1. Response factors for the sialyated compounds were not as consistent and were affected by linkage position of sialic acid. For oligosaccharides of the same size, increasing phosphorylation resulted in a twofold decrease in response factor for each added phosphate group. Therefore, conversion of sialylated and phosphorylated oligosaccharides to their neutral counterparts, using alkaline phosphatase or neuraminidase, respectively, was required for quantitative analysis of oligosaccharide mixtures using electrochemical response. Using this approach, complete separation of the parent neutral structures was obtained, the relative proportions of the neutral species were quantified, and the amount of sialic acid released was easily determined in a neuraminidase digest.  相似文献   

16.
Promethazine and thioridazine were separated and detected by capillary electrophoresis with end-column amperometric detection. The influence of pH value on oxidation potential, the peak current and the resolution were studied and the following conditions was selected: 0.03 M Na2HPO4 and 0.015 M citric acid at pH 3.0, detection potential at 1.10 V. The detection limits of these two substances were in the range of 10−8 mol/l. The linear range spanned two to three orders of magnitude. This method was applied to the detection of promethazine and thioridazine spiked in urine.  相似文献   

17.
A CMOS fabricated silicon microchip was used as a platform for immunoassays and DNA synthesis and hybridization. The chip is covered with a biofriendly matrix wherein the chemistries occur. The active silicon chip has over 1000 active electrodes that can be individually addressed for both synthesis of DNA and protein attachment to a membrane on the chip surface. Additionally, the active chip can be further used for the detection of various analytes at the chip surface via digital read out resulting from the redox enzymes on the captured oligonucleotide or antibody.  相似文献   

18.
A multiresidue method for the simultaneous determination of 22 organochlorine (OCs) and organophosphorus (Ops) pesticides (including isomers and metabolites), representing a wide range of physicochemical properties, was developed in fatty matrices extracted from meat. Pesticides were extracted from samples with acetonitrile/n-hexane (v:v, 1:1). The analytical screening was performed by gas chromatography coupled with electron-capture detection (ECD). The identification of compounds was based on their retention time and on comparison of the primary and secondary ions. The optimized method was validated by determining accuracy (recovery percentages), precision (repeatability and reproducibility), and sensitivity (detection and quantitation limits) from analyses of samples fortified at 38 to 300 ng/g levels. Correlation coefficients for the 22 extracted pesticide standard curves (linear regression analysis, n = 3) ranged from 0.998 to 1.000. Recovery studies from 2 g samples fortified at 3 levels demonstrated that the GC-ECD method provides 64.4-96.0% recovery for all pesticides except 2,4'-DDE (44.6-50.4%), 4,4'-DDE (51.1-57.5%) and 2,4'-DDT (50.0-51.2%). Both repeatability and reproducibility relative standard deviation values were < 20% for all residues. Detection limits ranged from 0.31 to 1.27 ng/g and quantification limits were between 1.04 and 4.25 ng/g. The proposed analytical method may be used as a simple procedure in routine determinations of OCs and Ops in meat. It can also be applied to the determination of pesticide multi-residues in other animal products such as butter and milk.  相似文献   

19.
A conductimetric biosensor for the detection of acrylonitrile in solution was designed and characterised using whole cells of Rhodococcus ruber NCIMB 40757, which were immobilised into a disc of dimethyl silicone sponge (ImmobaSil). The biosensor described was capable of the detection and quantification of acrylonitrile in aqueous solution, having a linear response to concentrations between 2 and 50 mM (106-2650 ppm) acrylonitrile. The biosensor has been shown to be reproducible with respect to the data obtained over a number of days, and retains stability for a minimum period of at least 5 days before recalibration of the biosensor is required.  相似文献   

20.
An amperometric microbial biosensor for the direct measurement of organophosphate nerve agents is described. The sensor is based on a carbon paste electrode containing genetically engineered cells expressing organophosphorus hydrolase (OPH) on the cell surface. OPH catalyzes the hydrolysis of organophosphorus pesticides with p-nitrophenyl substituent such as paraoxon, parathion and methyl parathion to p-nitrophenol. The later is detected anodically at the carbon transducer with the oxidation current being proportional to the nerve-agent concentration. The sensor sensitivity was optimized with respect to the buffer pH and loading of cells immobilized using paraoxon as substrate. The best sensitivity was obtained using a sensor constructed with 10 mg of wet cell weight per 100 mg of carbon paste and operating in pH 8.5 buffer. Using these conditions, the biosensor was used to measure as low as 0.2 microM paraoxon and 1 microM methyl parathion with very good sensitivity, excellent selectivity and reproducibility. The microbial biosensor had excellent storage stability, retaining 100% of its original activity when stored at 4 degrees C for up to 45 days.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号