首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The purpose of this study was to compare anthropometric and athletic performance variables during the playing career of NCAA Division III college football players. Two hundred and eighty-nine college football players were assessed for height, body mass, body composition, 1-repetition-maximum (1RM) bench press, 1RM squat, vertical jump height (VJ), vertical jump peak, and vertical jump mean (VJMP) power, 40-yd sprint speed (40S), agility, and line drill (LD) over an 8-year period. All testing occurred at the beginning of summer training camp in each of the seasons studied. Data from all years of testing were combined. Players in their fourth and fifth (red-shirt year) seasons of competition were significantly (p < 0.05) heavier than first-year players. Significant increases in strength were seen during the course of the athletes' collegiate career (31.0% improvement in the 1RM bench press and 36.0% increase in squat strength). The VJ was significantly greater during the fourth year of competition compared to in the previous 3 years of play. Vertical jump peak and VJMP were significantly elevated from years 1 and 2 and were significantly higher during year 4 than during any previous season of competition. No significant changes in 40S or LD time were seen during the athletes playing career. Fatigue rate for the LD (fastest time/slowest time of 3 LD) significantly improved from the first (83.4 ± 6.4%) to second season (85.1 ± 6.5%) of competition. Fatigue rates in the fourth (88.3 ± 4.8%) and fifth (91.2 ± 5.2%) seasons were significantly greater than in any previous season. Strength and power performance improvements appear to occur throughout the football playing career of NCAA Division III athletes. However, the ability to significantly improve speed and agility may be limited.  相似文献   

2.
The purpose of this study was to compare the impact of different types of warm-up on countermovement vertical jump (VJ) performance. Sixty-four male Division I collegiate football players completed a pretest for VJ height. The participants were then randomly assigned to a warm-up only condition, a warm-up plus static stretching condition, a warm-up plus dynamic stretching condition, or a warm-up plus dynamic flexibility condition. VJ performance was tested immediately after the completion of the warm-up. The results showed that there was a significant difference (P < .05) in VJ performance between the warm-up groups. Posttest jump performance improved in all groups; however, the mean for the static stretching group was significantly lower than the means for the other 3 groups. The static stretching negated the benefits gained from a general warm-up when performed immediately before a VJ test.  相似文献   

3.
Performance data for 261 NCAA Division 1A collegiate football players were analyzed to determine if player position, body weight, body fat, and training time were correlated with changes in performance in the following events: power clean (PC), bench press (BP), squat (SQ), vertical jump (VJ), 40-yd dash (40yd), and 20-yd shuttle (20yd). Individual positions were combined into the following groups: (A) wide receivers, defensive backs, and running backs, (B) linebackers, kickers, tight ends, quarterbacks, and specialists, and (C) linemen. Increases in body weight were positively correlated with increases in BP and PC performance for all groups. Increases in body fat were negatively correlated with performance in the PC and VJ for all groups. For group C, increases in body fat were also negatively correlated with performance in the 40yd and 20yd. Group and training time exhibited no linear relationship with performance in any of the tested events. No linear relationships were observed between the independent variables and performance in the SQ. When individual training data were analyzed longitudinally, a nonlinear increase in performance in the PC, BP, and SQ was observed as training time increased, with the greatest rate of change occurring between the first and second semesters of training.  相似文献   

4.
Volleyball players need to sprint and change direction during a match. Lower-body power, often measured by jump tests, could contribute to faster movements. How different jumps relate to linear and change-of-direction (COD) speed has not been analyzed in Division I (DI) collegiate women’s volleyball players. Fifteen female volleyball players completed the vertical jump (VJ), two-step approach jump (AppJ), and standing broad jump (SBJ). Peak power and power-to-body mass ratio (P:BM) were derived from VJ and AppJ height; relative SBJ was derived from SBJ distance. Linear speed was measured via a 20-m sprint (0–10 and 0–20 m intervals); COD speed was measured using the pro-agility shuttle. Pearson’s correlations (p < 0.05) calculated relationships between the power variables, and speed tests. There were no significant relationships between the power variables and the 0–10 m sprint interval. Greater VJ height (r = -0.534) and P:BM (r = -0.557) related to a faster 0–20 m sprint interval. This be due to a greater emphasis on the stretch-shortening cycle to generate speed over 20 m. However, although a 20-m sprint may provide a measure of general athleticism, the distance may not be specific to volleyball. This was also indicated as the AppJ did not relate to any of the speed tests. Nonetheless, VJ height and P:BM, and SBJ distance and relative SBJ, all negatively correlated with the proagility shuttle (r = -0.548 to -0.729). DI women’s collegiate volleyball players could develop absolute and relative power in the vertical and horizontal planes to enhance COD speed.  相似文献   

5.
6.
7.
Iguchi, J, Yamada, Y, Ando, S, Fujisawa, Y, Hojo, T, Nishimura, K, Kuzuhara, K, Yuasa, Y, and Ichihashi, N. Physical and performance characteristics of Japanese division 1 collegiate football players. J Strength Cond Res 25(12): 3368-3377, 2011-This study aimed to establish the physical and performance characteristics of football players in the Japanese Division 1 collegiate football program and perform a comparison of these characteristics between Japanese (n = 208) and US Division 1 football players (n = 797). The following comparisons were made: (a) between a higher-ranked university team vs. a lower-ranked university team in Japan, (b) between different playing positions in Japan, (c) between starters and nonstarters in Japan, and (d) between playing positions in Japan vs. those in the United States. The results of this study suggest that players in the higher-ranked university team were heavier, stronger in back squat, jumped higher, and had greater power than those on the lower-ranked team. Furthermore, linemen were generally characterized by larger size, greater strength, and more fat as compared with backs. On the other hand, backs tended to be faster, smaller in physical size, have higher vertical jump height, and show greater relative strength than linemen did. Starters were taller, heavier, stronger, had more powerful, and more fat-free mass than nonstarters. Finally, our results revealed that players in the United States were superior to players in Japan in all body status comparisons (p < 0.01). This study revealed that performance and superior body composition are essential for the success of a football player. Power and strength seem to be key factors in defining good football performance.  相似文献   

8.
This study investigated the physiological, anthropometric, and skill characteristics of rugby league players and determined the relationship between physical fitness and playing ability in these athletes. Eighty-six rugby league players (mean +/- SD age, 22.5 +/- 4.9 years) underwent measurements of standard anthropometry (height, body mass, and sum of 4 skinfolds), muscular power (vertical jump), speed (10-, 20-, and 40-m sprint), agility (L run), and estimated maximal aerobic power (multistage fitness test). In addition, 2 expert coaches independently assessed the playing ability of players using standardized skill criteria. First-grade players had significantly greater (p < 0.05) basic passing and ball-carrying ability and superior skills under fatigue, tackling and defensive skills, and evasion skills (i.e., ability to beat a player and 2 verse 1 skills) than second-grade and third-grade players. While no significant (p > 0.05) differences were detected among playing levels for body mass; skinfold thickness; height; 10-, 20-, or 40-m speed; agility; vertical jump height; or estimated maximal aerobic power, all the physiological and anthropometric characteristics were significantly (p < 0.05) associated with at least 1 measure of playing ability. The results of this study demonstrate that selected skill characteristics but not physiological or anthropometric characteristics discriminate between successful and less successful rugby league players. However, all physiological and anthropometric characteristics were related to playing ability. These findings suggest that while physiological and anthropometric characteristics do not discriminate between successful and less successful rugby league players, a high level of physical fitness contributes to effective playing ability in these athletes. A game-specific training program that incorporates both physical conditioning and skills training may facilitate a greater transfer of physical fitness to competitive performances in rugby league.  相似文献   

9.
The purpose of this study was to investigate positional relationships between sprint and jump abilities and body mass in elite college American football players (n = 1,136). Data from the annual National Football League combine over the years 2005-2009 were examined. The measures included for examination were the 9.1-, 18.3-, 36.6-, and flying 18.3-m sprints and the vertical and horizontal jumps. Pearson's correlation coefficients (r) were calculated to determine the relationships between the tests, and coefficients of determination (r2) were used to determine common variance. With the exception of the relationship between the 9.1-m and the flying 18.3-m sprints, the relationships between all sprints are very strong. Vertical jump ability is more strongly associated with maximum speed, as compared with acceleration. Horizontal jump ability is similarly associated with maximum speed and acceleration. The 9.1-, 18.3-, and flying 18.3-m sprints and the jump tests would appear to measure independent skills. Stationary start sprints up to 36.6 m appear to be heavily influenced by acceleration and may thus measure similar characteristics. The flying 18.3-m sprint is recommended as a measure of maximum speed. Body mass was most strongly associated with performance in the lineman group. When body mass was controlled for, correlations weakened across all the groups. The role of body mass remains unclear. Regardless of sport, the present research supports the notion that the relationships between various sprint and jump abilities warrant positional consideration. Coaches and practitioners will be able to use the findings of this research to better test and monitor athletes requiring different skills.  相似文献   

10.
11.
Twenty members of an National Collegiate Athletic Association Division III collegiate football team were assigned to either an Olympic lifting (OL) group or power lifting (PL) group. Each group was matched by position and trained 4-days.wk(-1) for 15 weeks. Testing consisted of field tests to evaluate strength (1RM squat and bench press), 40-yard sprint, agility, vertical jump height (VJ), and vertical jump power (VJP). No significant pre- to posttraining differences were observed in 1RM bench press, 40-yard sprint, agility, VJ or in VJP in either group. Significant improvements were seen in 1RM squat in both the OL and PL groups. After log10-transformation, OL were observed to have a significantly greater improvement in Delta VJ than PL. Despite an 18% greater improvement in 1RM squat (p > 0.05), and a twofold greater improvement (p > 0.05) in 40-yard sprint time by OL, no further significant group differences were seen. Results suggest that OL can provide a significant advantage over PL in vertical jump performance changes.  相似文献   

12.
We assessed body composition (height, body mass, body mass index, body fat by densitometry, fat mass, fat-free mass, and lean/fat ratio) and performance (10- and 40-yd sprints, pro shuttle run, vertical jump, sit and reach, and bench press) in 77 National Collegiate Athletic Association Division III football players. Data were analyzed by position and playing status. Significant differences (p 相似文献   

13.
External workload from matches is considered one of the most important muscle injury risk factors for football teams. However, there is scarce published evidence to support this belief. This study examined whether a particular profile of external match workload existed prior to a muscle injury. A total of 144 professional football players belonging to 2 teams were monitored over three seasons. For each muscle injury, a profile of external workload variables was determined for 5 to 8 games and expressed as: time playing exposure, total distance (TD) covered and high-speed running (HSR) covered. In addition, acute:chronic workload ratio (ACWR) was calculated. Sixty players (41.6%) reported a total of 86 muscle injuries during the three seasons. Muscle injuries occurred principally in matches (79.1%), the hamstring being the most affected muscle (44.1%). Injured players displayed substantially lower accumulated exposure time (ES = 0.45), TD (ES = 0.45) and HSR (ES = 0.39) in comparison with uninjured players in the last 5 games prior to injury. Compared to the uninjured players, ACWR for exposure (ES = -0.29/0.02) and running load (ES = -0.24/0.00) did not differ between match 5 and 2 prior to the injury, although uninjured players displayed a substantially greater ACWR in all 3 variables (ES = 0.31/0.35) than injured players in match 1 prior to the injury. Lower playing exposure (minutes played) and associated reduced running distances (TD and HSR) were observed in injured football players. Being under-loaded in official games could be a mediator for muscle injury in this cohort of elite football players.  相似文献   

14.
This study determined the physical fitness, match-activity profiles and physiological responses of representative tag football players and examined the relationship between physical fitness and the match-activity profile. Microtechnology devices and heart rate (HR) chest straps were used to determine the match-activity profiles of sixteen tag football players for five matches during the 2014 Australian National Championships. The relationships between lower body muscular power, straight line running speed and Yo-Yo intermittent recovery test level 2 (Yo-Yo IR2) and the match-activity profile were examined using Pearson’s correlation coefficients. Outside players had greater lower body muscular power (ES = 0.98) and straight line running speed (ES = 1.03–1.18) than inside players, and also covered greater very high-speed running (VHSR) distance/min (ES = 0.67) and reached higher peak running speeds (ES = 0.95) during matches. Inside and outside players performed a similar number of repeated high-intensity effort (RHIE) bouts and reported similar mean and maximum efforts per RHIE bout. However, there were differences between playing positions for mean and maximal RHIE effort durations (ES = 0.69–1.15) and mean RHIE bout recovery (ES = 0.56). Inside and outside players also reported small to moderate differences (ES = 0.43–0.80) for times spent in each HR zone. There were a number of moderate to very large correlations between physical fitness measures and match-activity profile variables. This study found lower body muscular power, straight line running speed and Yo-Yo IR2 to be related to the match-activities of representative tag football players, although differences between inside and outside players suggest that athlete testing and training practices should be modified for different playing positions.  相似文献   

15.
Debate exists between the benefits and effectiveness of a dynamic warm-up vs. a static warm-up. This study was conducted to compare dynamic and static warm-ups on lower body explosiveness as measured by stationary vertical jump (VJ) and standing long jump (LJ) among collegiate baseball players. Participants (n = 17; age = 19.59 ± 1.37 years) progressed through 3 different warm-ups on weekly testing dates over a 7-week period. After the warm-up routines, participants were measured for VJ height and LJ distance in centimeters. The mean jump heights for VJ were 66.49 ± 8.28 cm for dynamic, 61.42 ± 7.51 cm for static, and 62.72 ± 7.84 cm for the control condition. The mean jump distances for LJ were 231.99 ± 20.69 cm for dynamic, 219.69 ± 20.96 cm for static, and 226.46 ± 20.60 cm for the control. Results indicated that the participants jumped significantly higher in both experimental conditions while under the influence of the dynamic warm-up (VJ-F = 22.08; df = 1.33, 21.345; p < 0.00 and LJ-F = 32.20; df = 2, 32; p < 0.01). Additional LJ analysis determined that individuals jumped significantly further after no warm-up compared to after a static warm-up (-6.78, p < 0.05). Lower body explosiveness is critical in baseball and many other sports as well. The results show that dynamic warm-up increases both VJ height and LJ distance. Specifically, these findings indicate that athletes could gain nearly 2 in. on his or her vertical jump by simply switching from a static warm-up routine to a dynamic routine.  相似文献   

16.
The purpose of this study was to investigate the effect of a combined heavy-resistance and running-speed training program performed in the same training session on strength, running velocity (RV), and vertical-jump performance (VJ) of soccer players. Thirty-five individuals were divided into 3 groups. The first group (n = 12, COM group) performed a combined resistance and speed training program at the same training session, and the second one (n = 11, STR group) performed the same resistance training without speed training. The third group was the control group (n = 12, CON group). Three jump tests were used for the evaluation of vertical jump performance: squat jump, countermovement jump, and drop jump. The 30-m dash and 1 repetition maximum (1RM) tests were used for running speed and strength evaluation, respectively. After training, both experimental groups significantly improved their 1RM of all tested exercises. Furthermore, the COM group performed significantly better than the STR and the CON groups in the 30-m dash, squat jump, and countermovement jump. It is concluded that the combined resistance and running-speed program provides better results than the conventional resistance training, regarding the power performance of soccer players.  相似文献   

17.
PurposeRunning at high speed and sudden change in direction or activity stresses the knee. Surprisingly, not many studies have investigated the effects of sprinting on knee’s kinetics and kinematics of soccer players. Hence, this study is aimed to investigate indices of injury risk factors of jumping-landing maneuvers performed immediately after sprinting in male soccer players.MethodsTwenty-three collegiate male soccer players (22.1±1.7 years) were tested in four conditions; vertical jump (VJ), vertical jump immediately after slow running (VJSR), vertical jump immediately after sprinting (VJFR) and double horizontal jump immediately after sprinting (HJFR). The kinematics and kinetics data were measured using Vicon motion analyzer (100Hz) and two Kistler force platforms (1000Hz), respectively.ResultsFor knee flexion joint angle, (p = 0.014, η = 0.15) and knee valgus moment (p = 0.001, η = 0.71) differences between condition in the landing phase were found. For knee valgus joint angle, a main effect between legs in the jumping phase was found (p = 0.006, η = 0.31), which suggests bilateral deficit existed between the right and left lower limbs.ConclusionIn brief, the important findings were greater knee valgus moment and less knee flexion joint angle proceeding sprint (HJFR & VJFR) rather than no sprint condition (VJ) present an increased risk for knee injuries. These results seem to suggest that running and sudden subsequent jumping-landing activity experienced during playing soccer may negatively change the knee valgus moment. Thus, sprinting preceding a jump task may increase knee risk factors such as moment and knee flexion joint angle.  相似文献   

18.
The purpose of this article was to investigate the relation between anthropometric and physiological variables to linear bat swing velocity (BV) of 2 groups of high-school baseball players before and after completing a 12-week periodized resistance exercise program. Participants were randomly assigned to 1 of 2 training groups using a stratified sampling technique. Group 1 (n = 24) and group 2 (n = 25) both performed a stepwise periodized resistance exercise program and took 100 swings a day, 3 d·wk-1, for 12 weeks with their normal game bat. Group 2 performed additional rotational and full-body medicine ball exercises 3 d·wk-1 for 12 weeks. Fourteen variables were measured or calculated before and after 12 weeks of training. Anthropometric and physiological variables tested were height, body mass, percent body fat, lean body mass (LBM), dominant torso rotational strength (DTRS) and nondominant torso rotational strength (NDTRS), sequential hip-torso-arm rotational strength measured by a medicine ball hitter's throw (MBHT), estimated 1 repetition maximum parallel squat (PS) and bench press (BP), vertical jump (VJ), estimated peak power, angular hip velocity (AHV), and angular shoulder velocity (ASV). The baseball-specific skill of linear BV was also measured. Statistical analysis indicated a significant moderately high positive relationship (p ≤ 0.05) between prelinear BV and pre-NDTRS for group 1, pre-LBM, DTRS, NDTRS, peak power, and ASV for group 2; moderate positive relationship between prelinear BV and preheight, LBM, DTRS, peak power, BP, PS, and ASV for group 1, preheight, body mass, MBHT, BP, and PS for group 2. Significantly high positive relationships were indicated between postlinear BV and post-NDTRS for group 1, post-DTRS and NDTRS for group 2; moderately high positive relationships between postlinear BV and post-LBM, DTRS, peak power, BP, and PS for group 1, postheight, LBM, VJ, peak power for group 2; moderate positive relationships between postlinear BV and postheight, body mass, MBHT, and VJ for group 1, postbody mass, MBHT, BP, PS, and ASV for group 2. Significantly low positive relationships were indicated between prelinear BV and prebody mass, MBHT, and VJ for group 1, pre-VJ and AHV for group 2; postlinear BV and post-AHV for group 2. These data show that significant relationships do exist between height, body mass, LBM, rotational power, rotational strength, lower body power, upper and lower body strength, AHV, and ASV to linear BV of high-school baseball players. Strength coaches may want to consider using this information when designing a resistance training program for high-school baseball players. Those recruiting or scouting baseball players may want to use this information to further develop ways of identifying talented players. However, one should be cautious when interpreting this information when designing strength training programs for high-school baseball players to increase linear BV.  相似文献   

19.
The purpose of this study was to determine the relationship of the backward overhead medicine ball (BOMB) throw to power production in college football players. Forty National Collegiate Athletic Association Division II college football players were studied at the end of an 8-week off-season conditioning program for power output determined from a countermovement vertical jump on a force plate and for maximal distance in the standing BOMB throw. Although the reliability of the BOMB test was high (interclass correlation coefficient = 0.86), there was a significant learning effect across 3 trials (p < 0.01). Peak and average powers generated during the vertical jump correlated moderately but significantly with the best BOMB throw distance (r = 0.59 and 0.63, respectively). Considering power relative to body mass or lean body mass failed to produce significant correlations with BOMB throw distance (r = 0.27 and 0.28, respectively). Therefore, the BOMB throw may have limited potential as a predictor of total body explosive power in college football players.  相似文献   

20.
The performance of 326 collegiate football players attending the 2000 National Football League combine was studied to determine whether draft status could be predicted from performance measurements. The combine measured height and weight along with 9 performance tests: 225-lb bench press test, 10-yd dash, 20-yd dash, 40-yd dash, 20-yd proagility shuttle, 60-yd shuttle, 3-cone drill, broad jump, and vertical jump. Prediction equations were generated for 7 position categories with varying degrees of accuracy-running backs (RBs), r(2) = 1.00; wide receivers (WRs), r(2) = 1.00; offensive linemen, r(2) = 0.70; defensive linemen, r(2) = 0.59; defensive backs (DBs), r(2) = 1.00; linebackers, r(2) = 0.22; and quarterbacks, r(2) = 0.84. The successes of the prediction equations are related to the ability of the individual tests to assess the necessary skills for each position. This study concludes that the combine can be used to accurately predict draft status of RBs, WRs, and DBs. The equations can also be used as a good to fair estimate for other positions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号