首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
If the efficiency of human movement patterns could be improved using exercise, this could lead to more effective musculoskeletal disease-injury prevention and rehabilitation programs. It has been suggested that an efficient squat movement pattern emphasizes the use of the large hip extensors instead of the smaller knee extensors. The purpose of this study was to determine whether a counterbalanced squat (CBS) could produce a more hip-dominant and less knee-dominant squat movement pattern as compared with a regular squat (RS). There were 31 recreationally trained college-aged participants (15 male, 16 female) who performed 10 squats (5 CBS and 5 RS), while segment kinematics, ground reaction forces, and muscle (gluteus maximus [GM], quadriceps, hamstrings) electromyographic (EMG) activations were recorded. Peak sagittal plane net joint moments and joint ranges of motion at the hip, knee, and ankle joints along with peak and integrated EMG activation levels for all 3 muscles were compared using analysis of variance (squat type × sex). The results revealed that the CBS increased the hip joint moment and GM activation, while it decreased the knee joint moment and quadriceps activation as compared with the RS. Therefore, the CBS produces a more hip-dominant and less knee-dominant squat movement pattern and could be used in exercise programs aimed at producing more hip-dominant movement patterns.  相似文献   

2.
Moment arms are important for understanding muscular behavior and for calculating internal muscle forces in musculoskeletal simulations. Biarticular muscles cross two joints and have moment arms that depend on the angle of both joints the muscles cross. The tendon excursion method was used to measure the joint angle-dependence of hamstring (biceps femoris, semimembranosus and semitendinosus) moment arm magnitudes of the feline hindlimb at the knee and hip joints. Knee angle influenced hamstring moment arm magnitudes at the hip joint; compared to a flexed knee joint, the moment arm for semimembranosus posterior at the hip was at most 7.4 mm (25%) larger when the knee was extended. On average, hamstring moment arms at the hip increased by 4.9 mm when the knee was more extended. In contrast, moment arm magnitudes at the knee varied by less than 2.8 mm (mean=1.6 mm) for all hamstring muscles at the two hip joint angles tested. Thus, hamstring moment arms at the hip were dependent on knee position, while hamstring moment arms at the knee were not as strongly associated with relative hip position. Additionally, the feline hamstring muscle group had a larger mechanical advantage at the hip than at the knee joint.  相似文献   

3.
The current study aimed to examine the effect of anterior cruciate ligament deficiency (ACLd) on joint kinetics and dynamic stability control after a single leg hop test (SLHT). Twelve unilateral ACLd patients and a control subject group (n=13) performed a SLHT over a given distance with both legs. The calculation of joint kinetics was done by means of a soft-tissue artifact optimized rigid full-body model. Margin of stability (MoS) was quantified by the difference between the base of support and the extrapolated center of mass. During landing, the ACLd leg showed lower external knee flexion moments but demonstrated higher moments at the ankle and hip compared to controls (p<0.05). The main reason for the joint moment redistribution in the ACLd leg was a more anterior position of the ground reaction force (GRF) vector, which affected the moment arms of the GRF acting about the joints (p<0.05). For the ACLd leg, trunk angle was more flexed over the entire landing phase compared to controls (p<0.05) and we found a significant correlation between moment arms at the knee joint and trunk angle (r2 = 0.48;p<0.01). The consequence of this altered landing strategy in ACLd legs was a more anterior position of the center of mass reducing the MoS (p<0.05). The results illustrate the interaction between trunk angle, joint kinetics and dynamic stability during landing maneuvers and provide evidence of a feedforward adaptive adjustment in ACLd patients (i.e. more flexed trunk angle) aimed at reducing knee joint moments at the cost of dynamic stability control.  相似文献   

4.
ABSTRACT: Bryanton, MA, Kennedy, MD, Carey, JP, and Chiu, LZF. Effect of squat depth and barbell load on relative muscular effort in squatting. J Strength Cond Res 26(10): 2820-2828, 2012-Resistance training is used to develop muscular strength and hypertrophy. Large muscle forces, in relation to the muscle's maximum force-generating ability, are required to elicit these adaptations. Previous biomechanical analyses of multi-joint resistance exercises provide estimates of muscle force but not relative muscular effort (RME). The purpose of this investigation was to determine the RME during the squat exercise. Specifically, the effects of barbell load and squat depth on hip extensor, knee extensor, and ankle plantar flexor RME were examined. Ten strength-trained women performed squats (50-90% 1 repetition maximum) in a motion analysis laboratory to determine hip extensor, knee extensor, and ankle plantar flexor net joint moment (NJM). Maximum isometric strength in relation to joint angle for these muscle groups was also determined. Relative muscular effect was determined as the ratio of NJM to maximum voluntary torque matched for joint angle. Barbell load and squat depth had significant interaction effects on hip extensor, knee extensor, and ankle plantar flexor RME (p < 0.05). Knee extensor RME increased with greater squat depth but not barbell load, whereas the opposite was found for the ankle plantar flexors. Both greater squat depth and barbell load increased hip extensor RME. These data suggest that training for the knee extensors can be performed with low relative intensities but require a deep squat depth. Heavier barbell loads are required to train the hip extensors and ankle plantar flexors. In designing resistance training programs with multi-joint exercises, how external factors influence RME of different muscle groups should be considered to meet training objectives.  相似文献   

5.
The effects of walking speed and age on the peak external moments generated about the joints of the trailing limb during stance just prior to stepping over an obstacle and on the kinematics of the trailing limb when crossing the obstacle were investigated in 10 healthy young adults (YA) and 10 healthy older adults (OA). The peak hip and knee adduction moments in OA were 21-43% greater than those in YA (p相似文献   

6.
The purpose of this study was to compare the biomechanics of the traditional squat with 2 popular exercise variations commonly referred to as the powerlifting squat and box squat. Twelve male powerlifters performed the exercises with 30, 50, and 70% of their measured 1 repetition maximum (1RM), with instruction to lift the loads as fast as possible. Inverse dynamics and spatial tracking of the external resistance were used to quantify biomechanical variables. A range of significant kinematic and kinetic differences (p < 0.05) emerged between the exercises. The traditional squat was performed with a narrow stance, whereas the powerlifting squat and box squat were performed with similar wide stances (48.3 ± 3.8, 89.6 ± 4.9, 92.1 ± 5.1 cm, respectively). During the eccentric phase of the traditional squat, the knee traveled past the toes resulting in anterior displacement of the system center of mass (COM). In contrast, during the powerlifting squat and box squat, a more vertical shin position was maintained, resulting in posterior displacements of the system COM. These differences in linear displacements had a significant effect (p < 0.05) on a number of peak joint moments, with the greatest effects measured at the spine and ankle. For both joints, the largest peak moment was produced during the traditional squat, followed by the powerlifting squat, then box squat. Significant differences (p < 0.05) were also noted at the hip joint where the largest moment in all 3 planes were produced during the powerlifting squat. Coaches and athletes should be aware of the biomechanical differences between the squatting variations and select according to the kinematic and kinetic profile that best match the training goals.  相似文献   

7.
This study examined the influence of a mechanical perturbation of the ankle joint on obstacle avoidance pattern. A decoupled control between the distal joint and the combined (hip-knee) proximal joints was observed according to the task requirement. In this context, a greater mechanical friction at the ankle should be compensated at this joint (local compensation) or alternatively, by regulating more combined proximal joints (knee and/or hip). The leading limb inter-segmental coordination was evaluated in both no constraint and constraint conditions in calculating ranges of motion (ROM), moments of force and powers (from heel-off to obstacle) at the ankle, knee and hip joints. Electromyographic activities were also analyzed. With the constraint, the dorsiflexor moment and the tibialis anterior activity remained unchanged while both ROM and power bursts (absorbed and generated) decreased. The hip and knee ROM remain invariant. At heel-off the absorption by hip extensors decreased and the forthcoming generation by knee flexors increased in the constraint condition. To quantify the inter-joint coordination, principal component analysis was used and indicated a high level of inter-joint coupling (synergy) that decreased with the constraint (i.e. less inter-joint coupling). At the ankle joint, the results suggest that the central command was the same in both conditions thus, not be adapted. At both the hip and knee joints, a combined joints modulation occurred to overcome additional friction.  相似文献   

8.
Robotic lower limb exoskeletons hold significant potential for gait assistance and rehabilitation; however, we have a limited understanding of how people adapt to walking with robotic devices. The purpose of this study was to test the hypothesis that people reduce net muscle moments about their joints when robotic assistance is provided. This reduction in muscle moment results in a total joint moment (muscle plus exoskeleton) that is the same as the moment without the robotic assistance despite potential differences in joint angles. To test this hypothesis, eight healthy subjects trained with the robotic hip exoskeleton while walking on a force-measuring treadmill. The exoskeleton provided hip flexion assistance from approximately 33% to 53% of the gait cycle. We calculated the root mean squared difference (RMSD) between the average of data from the last 15 min of the powered condition and the unpowered condition. After completing three 30-min training sessions, the hip exoskeleton provided 27% of the total peak hip flexion moment during gait. Despite this substantial contribution from the exoskeleton, subjects walked with a total hip moment pattern (muscle plus exoskeleton) that was almost identical and more similar to the unpowered condition than the hip angle pattern (hip moment RMSD 0.027, angle RMSD 0.134, p<0.001). The angle and moment RMSD were not different for the knee and ankle joints. These findings support the concept that people adopt walking patterns with similar joint moment patterns despite differences in hip joint angles for a given walking speed.  相似文献   

9.
Bilateral movements are common in human movement, both as exercises and as daily activities. Because the movement patterns are similar, it is often assumed that there are no bilateral differences (BDs; differences between the left and right sides) in the joint torques that are producing these movements. The aim of this investigation was to test the assumption that the joint torques are equal between the left and right lower extremities by quantifying BDs during the barbell squat. Eighteen recreationally trained men (n = 9) and women (n = 9) completed 3 sets of 3 repetitions of the squat exercise, under 4 loading conditions: 25, 50, 75, and 100% of their 3 repetition maximum, while instrumented for biomechanical analysis. The average net joint moment (ANJM) and maximum flexion angle (MFA) for the hip, knee, and ankle as well as the average vertical ground reaction force (AVGRF) and the average distance from the ankle joint center to the center of pressure (ADCOP) were calculated. Group mean and individual data were analyzed (alpha = 0.05). At each joint, there was a significant main effect for side and load, no main effect for gender, with few significant interactions. The hip ANJM was 12.4% larger on the left side, the knee ANJM was 13.2% larger on the right side, and the ankle ANJM was 16.8% larger on the left side. Differences in MFAs between sides were less than 2 degrees for all 3 joints (all p > 0.20 except for the knee at 75% [p = 0.024] and 100% [p = 0.025]), but the AVGRF and the ADCOP were 6% and 11% larger on the left side. Few subjects exhibited the pattern identified with the group mean data, and no subject exhibited nonsignificant BDs for all 3 joints. These findings suggest that joint torques should not be assumed to be equal during the squat and that few individual subjects follow the pattern exhibited by group mean data.  相似文献   

10.
When comparing previous studies that have measured the three-dimensional moments acting about the lower limb joints (either external moments or opposing internal joint moments) during able-bodied adult gait, significant variation is apparent in the profiles of the reported transverse plane moments. This variation cannot be explained on the basis of adopted convention (i.e. external versus internal joint moment) or inherent variability in gait strategies. The aim of the current study was to determine whether in fact the frame in which moments are expressed has a dominant effect upon transverse plane moments and thus provides a valid explanation for the observed inconsistency in the literature. Kinematic and ground reaction force data were acquired from nine able-bodied adult subjects walking at a self-selected speed. Three-dimensional hip, knee and ankle joint moments during gait were calculated using a standard inverse dynamics approach. In addition to calculating internal joint moments, the components of the external moment occurring in the transverse plane at each of the lower limb joints were calculated to determine their independent effects. All moments were expressed in both the laboratory frame (LF) as well as the anatomical frame (AF) of the distal segment. With the exception of the ankle rotation moment in the foot AF, lower limb transverse plane joint moments during gait were found to display characteristic profiles that were consistent across subjects. Furthermore, lower limb transverse plane joint moments during gait differed when expressed in the distal segment AF compared to the LF. At the hip, the two alternative reference frames produced near reciprocal joint moment profiles. The components of the external moment revealed that the external ground reaction force moment was primarily responsible for this result. Lower limb transverse plane joint moments during gait were therefore found to be highly sensitive to a change in reference frame. These findings indicate that the different transverse plane joint moment profiles during able-bodied adult gait reported in the literature are likely to be explained on this basis.  相似文献   

11.
The purposes of this study was to test a mechanism to reduce the knee adduction moment by testing the hypothesis that increased medio-lateral trunk sway can reduce the knee adduction moment during ambulation in healthy subjects, and to examine the possibility that increasing medio-lateral trunk sway can produce similar potentially adverse secondary gait changes previously associated with reduced knee adduction moments in patients with knee osteoarthritis. Nineteen healthy adults performed walking trials with normal and increased medio-lateral trunk sway at a self-selected normal walking speed. Standard gait analysis was used to calculate three-dimensional lower extremity joint kinematics and kinetics. Knee and hip adduction moments were lower (-65.0% and -57.1%, respectively) for the increased medio-lateral trunk sway trials than for the normal trunk sway trials. Knee flexion angle at heel-strike was 3 degrees higher for the increased than for the normal trunk sway trials. Knee and hip abduction moments were higher for the increased medio-lateral trunk sway trials, and none of the other variables differed between the two conditions. Walking with increased medio-lateral trunk sway substantially reduces the knee adduction moment during walking in healthy subjects without some of the adverse secondary effects such as increased axial loading rates at the major joints of the lower extremity. This result supports the potential of using gait retraining for walking with increased medio-lateral trunk sway as treatment for patients with degenerative joint disease such as medial compartment knee osteoarthritis.  相似文献   

12.
The role of intersegmental dynamics during rapid limb oscillations   总被引:4,自引:0,他引:4  
The interactive dynamic effects of muscular, inertial and gravitational moments on rapid, multi-segmented limb oscillations were studied. Using three-segment, rigid-body equations of motion, hip, knee and ankle intersegmental dynamics were calculated for the steady-state cycles of the paw-shake response in adult spinal cats. Hindlimb trajectories were filmed to obtain segmental kinematics, and myopotentials of flexors and extensors at each of the three joints were recorded synchronously with the ciné film. The segmental oscillations that emerged during the paw-shake response were a consequence of an interplay between active and passive musculotendinous forces, inertial forces, and gravity. During steady-state oscillations, the amplitudes of joint excursions, peak angular velocities, and peak angular accelerations increased monotonically and significantly in magnitude from the proximal joint (hip) to the most distal joint (ankle). In contrast to these kinematic relationships, the maximal values of net moments at the hip and knee were equal in magnitude, but of significantly lower magnitude than the large net moment at the ankle joint. At both the ankle and the knee, the flexor and extensor muscle moments were equal, but at the hip the magnitude of the peak flexor muscle moment was significantly greater than the extensor muscle moment. Muscle moments at the hip not only acted to counterbalance accelerations of the more distal segments, but also acted to maintain the postural orientation of the hindlimb. Large muscle moments at the knee functioned to counterbalance the large inertial moments generated by the large angular accelerations of the paw. At the ankle, the muscle moments dominated the generation of the paw accelerations. At the ankle and the knee, muscle moments controlled limb dynamics by slowing and reversing joint motions, and the active muscle forces contributing to ankle and knee moments were derived from lengthening of active musculotendinous units. In contrast to the more distal joints, the active muscles crossing the hip predominantly shortened as a result of the interplay among inertial forces and gravitational moments. The muscle function and kinetic data explain key features of the complex interactions that occur between central control mechanisms and multi-segmented, oscillating limb segments during the paw-shake response.  相似文献   

13.
Two-dimensional analyses of sprint kinetics are commonly undertaken but often ignore the metatarsalphalangeal (MTP) joint and model the foot as a single segment. Due to the linked-segment nature of inverse dynamics analyses, the aim of this study was to investigate the effect of ignoring the MTP joint on the calculated joint kinetics at the other stance leg joints during sprinting. High-speed video and force platform data were collected from four to five trials for each of three international athletes. Resultant joint moments, powers, and net work at the stance leg joints during the first stance phase after block clearance were calculated using three different foot models. By ignoring the MTP joint, peak extensor moments at the ankle, knee, and hip were on average 35% higher (p < .05 for each athlete), 40% lower (p < .05), and 9% higher (p > .05), respectively, than those calculated with the MTP joint included. Peak ankle and knee joint powers and net work at all joints were also significantly (p < .05) different. By ignoring a genuine MTP joint plantar flexor moment, artificially high peak ankle joint moments are calculated, and these also affect the calculated joint kinetics at the knee.  相似文献   

14.
The aim of the present study was to analyze the net joint moment distribution, joint forces and kinematics during cycling to exhaustion. Right pedal forces and lower limb kinematics of ten cyclists were measured throughout a fatigue cycling test at 100% of POMAX. The absolute net joint moments, resultant force and kinematics were calculated for the hip, knee and ankle joint through inverse dynamics. The contribution of each joint to the total net joint moments was computed. Decreased pedaling cadence was observed followed by a decreased ankle moment contribution to the total joint moments in the end of the test. The total absolute joint moment, and the hip and knee moments has also increased with fatigue. Resultant force was increased, while kinematics has changed in the end of the test for hip, knee and ankle joints. Reduced ankle contribution to the total absolute joint moment combined with higher ankle force and changes in kinematics has indicated a different mechanical function for this joint. Kinetics and kinematics changes observed at hip and knee joint was expected due to their function as power sources. Kinematics changes would be explained as an attempt to overcome decreased contractile properties of muscles during fatigue.  相似文献   

15.
The purpose of this study was to investigate the influence of wearing figure skating skates on vertical jump performance and interjoint co-ordinations described in terms of sequencing and timing of joint rotations. Ten national to international figure skaters were filmed while performing a squat jump (SJ) on a force platform. Three experimental conditions were successively realized: barefoot (BF), lifting a 1.5 kg weight (LW) corresponding to the skates' mass, attached on the distal extremity of each leg and wearing skates (SK). Jump height, angular kinematics as well as joints kinetics were calculated. Relative to the SJ height reached in the BF condition, SJ performance was significantly decreased by 2.1 and 5.5 cm in the LW and SK conditions, respectively. The restriction of ankle amplitude imposed by wearing skates was found to significantly limit the knee joint amplitude while the hip angular motion was not affected. Neither the skates' mass nor the limited ankle angular motion modified the proximo-distal organization of joint co-ordination observed when jumping barefoot. However, with plantar flexion restriction, the delay between hip and knee extensions increased while it was reduced between knee and ankle extensions. Work output at the knee and ankle joints were significantly lowered when wearing skates. The decrease of work at the knee was shown to result from an early flexing moment causing a premature deceleration of the knee and from a reduction of knee amplitude. Taken together, these results show a minimization of the participation of the knee when plantar flexion is limited. It was proposed that constraining the distal joint causes a reorganization of interjoint co-ordinations and a redistribution of the energy produced by knee extensors to the hip and ankle joints.  相似文献   

16.
Biomechanical model assumptions affect the interpretation of the role of the muscle or joint moments to the segmental power estimated by induced acceleration analysis (IAA). We evaluated the effect of modeling the pelvis and trunk segments as two separate segments (8 SM) versus as a single segment (7 SM) on the segmental power, support of the body, knee and hip extension acceleration produced by the joint moments during the stance phase of normal walking. Significant differences were observed in the contribution of the stance hip abductor and extensor moments to support, ipsilateral knee and hip acceleration, and ipsilateral thigh and upper body power. The primary finding was that the role of the stance hip moment in generating ipsilateral thigh and upper body power differed based on degrees of freedom in the model. Secondarily, the magnitude of contributions also differed. For example, the hip abductor and extensor moments showed greater contribution to support, hip and knee acceleration in the 8 SM. IAA and segment power analysis are sensitive to the degrees of freedom between the pelvis and trunk. There is currently no gold standard by which to evaluate the accuracy of IAA predictions. However, modeling the pelvis and trunk as separate segments is closer to the anatomical architecture of the body. An 8 SM appears to be more appropriate for estimating the role of joint moments, particularly to motion of more proximal segments during normal walking.  相似文献   

17.
Computationally advanced biomechanical analyses of gait demonstrate the often counter-intuitive roles of joint moments on various aspects of gait such as propulsion, swing initiation, and balance. Each joint moment can produce linear and angular acceleration of all body segments (including those on which the moment does not directly act) due to the dynamic coupling inherent in the interconnected musculoskeletal system. This study presents quantitative relationships between individual joint moments and trunk control with respect to balance during gait to show that the ankle, knee, and hip joint moments all affect the angular acceleration of the trunk. We show that trunk angular acceleration is affected by all joints in the leg with varying degrees of dependence during the gait cycle. Furthermore, it is shown that inter-planar coupling exists and a two-dimensional analysis of trunk balance neglects important out-of-plane joint moments that affect trunk angular acceleration.  相似文献   

18.
Joint moments are of interest because they bear some relation to muscular effort and hence rider performance. The general objective of this study is to explore the relation between joint moments and pedalling rate (i.e. cadence). Joint moments are computed by modelling the leg-bicycle system as a five-bar linkage constrained to plane motion. Using dynamometer pedal force data and potentiometer crank and pedal position data, system equations are solved on a computer to produce moments at the ankle, knee and hip joints. Cadence and pedal forces are varied inversely to maintain constant power. Results indicate that average joint moments vary considerably with changes in cadence. Both hip and knee joints show an average moment which is minimum near 105 rotations min-1 for cruising cycling. It appears that an optimum rotations min-1 can be determined from a mechanical approach for any given power level and bicycle-rider geometry.  相似文献   

19.
Resultant flexion/extension lower extremity joint moments of four below-knee amputees running between 2.5 and 5.7 m s-1 were computed during stance on their intact and prosthetic limbs. All subjects wore patellar tendon-bearing prostheses with either a SACH or Greissinger foot component. During stance on the prosthesis, the resultant hip extensor moment on the amputated side was greater in magnitude and duration than its counterpart on the intact limb during its corresponding stance period. Since the artificial foot was planted on the ground, such a moment may help control knee flexion and promote knee extension of the residual limb. For the three subjects whose knees continued to flex at the beginning of stance, there was a dominant extensor moment about the knee joint during stance on the prosthesis. By contrast, for the fourth subject whose knee remained straight or hyperextended throughout stance on the prosthesis, a flexor moment was dominant.  相似文献   

20.
A relationship exists between lumbar paraspinal muscle fatigue and quadriceps muscle activation. The objective of this study was to determine whether hip and knee joint moments during jogging changed following paraspinal fatiguing exercise. Fifty total subjects (25 with self-reported history of low back pain) performed fatiguing, isometric lumbar extension exercise until a shift in EMG median frequency corresponding to a mild level of muscle fatigue was observed. We compared 3-dimensional external joint moments of the hip and knee during jogging before and after lumbar paraspinal fatigue using a 10-camera motion analysis system. Reduced external knee flexion, knee adduction, knee internal rotation and hip external rotation moments and increased external knee extension moments resulted from repetitive lumbar paraspinal fatiguing exercise. Persons with a self-reported history of LBP had larger knee flexion moments than controls during jogging. Neuromuscular changes in the lower extremity occur while resisting knee and hip joint moments following isolated lumbar paraspinal exercise. Persons with a history of LBP seem to rely more heavily on quadriceps activity while jogging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号