首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to examine the effects of active recovery (AR), massage (MR), and cold water immersion (CR) on performance of repeated bouts of high-intensity cycling separated by 24 hours. For each recovery condition, subjects were asked to take part in 2 intermittent cycling sessions; 18 minutes of varying work intervals performed in succession at a resistance of 80 g/kg body weight separated by 24 hours. One of four 15-minute recovery conditions immediately followed the first session and included: (a) AR, cycling at 30% Vo(2)max; (b) CR, immersion of legs in a 15 degrees C water bath; (c) MR, massage of the legs; and (d) control, seated rest. Only the control condition showed a significant decline in the total work completed between the first and second exercise sessions (108.1 +/- 5.4 kJ vs. 106.0 +/- 5.0 kJ, p < 0.05). Thus, AR, MR, and CR appeared to facilitate the recovery process between 2 high-intensity, intermittent exercise sessions separated by 24 hours.  相似文献   

2.
The strength cycle ergometer has been proposed as a method of simultaneously increasing aerobic conditioning and muscular strength, because of its unique capacity of disengaging the pedal crank, thus allowing for concurrent single-leg cycling. The purpose of this study was to assess the aerobic and muscular strength effects of strength cycle training (SCT), comparing it to similar standard cycle training. A total of 28 recreationally-trained adult subjects (9 men, 19 women) were paired for VO2peak and randomly assigned to either SCT or Monark cycle training (MCT). Subjects trained 3 days per week following a progressive interval protocol for 9 weeks under supervised conditions. Training intervals (5 minutes' duration) consisted of 3 minutes of standard cycling at an intensity of 60-85% of maximum heart rate (HRmax), and 2 minutes of either the disengaged cycling mode (SCT) or standard cycling plus 30 W (MCT). Subjects began training for a total of 25 minutes per session, progressing to 45 minutes per session by study's end. Prior to and following training, subjects were measured for VO2peak; submaximal VO2, heart rate (HR), RPE, power output, and knee and ankle isokinetic strength. Training resulted in significant (p < or = 0.05) increases in VO2peak (14.5%) and submaximal power output (11%), and significant reductions in submaximal VO2, HR, and RPE in both groups. Significant increases in bilateral isokinetic knee extension (4-6%) and left ankle plantar flexion (10.5%) were noted following training in both groups. No group differences were detected in any variable. Although the strength cycle effectively increased aerobic function and resulted in modest selected increases in lower-extremity muscular strength, these changes were not different from those seen using a similar standard cycling protocol.  相似文献   

3.
Whether the use of pre-exercise hyperhydration could improve the performance of athletes who do not hydrate sufficiently during prolonged exercise is still unknown. We therefore compared the effects of pre-exercise hyperhydration and pre-exercise euhydration on endurance capacity, peak power output and selected components of the cardiovascular and thermoregulatory systems during prolonged cycling. Using a randomized, crossover experimental design, 6 endurance-trained subjects underwent a pre-exercise hyperhydration (26 ml of water x kg body mass(-1) with 1.2 g glycerol x kg body mass(-1)) or pre-exercise euhydration period of 80 min, followed by 2 h of cycling at 65% maximal oxygen consumption (VO(.)2max) (26-27 degrees C) that were interspersed by 5, 2-min intervals performed at 80% V(.)O2max. Following the 2 h cycling exercise, subjects underwent an incremental cycling test to exhaustion. Pre-exercise hyperhydration increased body water by 16.1+/-2.2 ml.kg body mass(-1). During exercise, subjects received 12.5 ml of sports drink x kg body mass(-1). With pre-exercise hyperhydration and pre-exercise euhydration, respectively, fluid ingestion during exercise replaced 31.0+/-2.9% and 37.1+/-6.8% of sweat losses (p>0.05). Body mass loss at the end of exercise reached 1.7+/-0.3% with pre-exercise hyperhydration and 3.3+/-0.4% with pre-exercise euhydration (p<0.05). During the 2 h of cycling, pre-exercise hyperhydration significantly decreased heart rate and perceived thirst, but rectal temperature, sweat rate, perceived exertion and perceived heat-stress did not differ between conditions. Pre-exercise hyperhydration significantly increased time to exhaustion and peak power output, compared with pre-exercise euhydration. We conclude that pre-exercise hyperhydration improves endurance capacity and peak power output and decreases heart rate and thirst sensation, but does not reduce rectal temperature during 2 h of moderate to intense cycling in a moderate environment when fluid consumption is 33% of sweat losses.  相似文献   

4.
The traditional warm-up (WU) used by athletes to prepare for a sprint track cycling event involves a general WU followed by a series of brief sprints lasting ≥ 50 min in total. A WU of this duration and intensity could cause significant fatigue and impair subsequent performance. The purpose of this research was to compare a traditional WU with an experimental WU and examine the consequences of traditional and experimental WU on the 30-s Wingate test and electrically elicited twitch contractions. The traditional WU began with 20 min of cycling with a gradual intensity increase from 60% to 95% of maximal heart rate; then four sprints were performed at 8-min intervals. The experimental WU was shorter with less high-intensity exercise: intensity increased from 60% to 70% of maximal heart rate over 15 min; then just one sprint was performed. The Wingate test was conducted with a 1-min lead-in at 80% of optimal cadence followed by a Wingate test at optimal cadence. Peak active twitch torque was significantly lower after the traditional than experimental WU (86.5 ± 3.3% vs. 94.6 ± 2.4%, P < 0.05) when expressed as percentage of pre-WU amplitude. Wingate test performance was significantly better (P < 0.01) after experimental WU (peak power output = 1,390 ± 80 W, work = 29.1 ± 1.2 kJ) than traditional WU (peak power output = 1,303 ± 89 W, work = 27.7 ± 1.2 kJ). The traditional track cyclist's WU results in significant fatigue, which corresponds with impaired peak power output. A shorter and lower-intensity WU permits a better performance.  相似文献   

5.
The effect of changing muscle temperature on performance of short term dynamic exercise in man was studied. Four subjects performed 20 s maximal sprint efforts at a constant pedalling rate of 95 crank rev.min-1 on an isokinetic cycle ergometer under four temperature conditions: from rest at room temperature; and following 45 min of leg immersion in water baths at 44; 18; and 12 degrees C. Muscle temperature (Tm) at 3 cm depth was respectively 36.6, 39.3, 31.9 and 29.0 degrees C. After warming the legs in a 44 degrees C water bath there was an increase of approximately 11% in maximal peak force and power (PPmax) compared with normal rest while cooling the legs in 18 and 12 degrees C water baths resulted in reductions of approximately 12% and 21% respectively. Associated with an increased maximal peak power at higher Tm was an increased rate of fatigue. Two subjects performed isokinetic cycling at three different pedalling rates (54, 95 and 140 rev.min-1) demonstrating that the magnitude of the temperature effect was velocity dependent: At the slowest pedalling rate the effect of warming the muscle was to increase PPmax by approximately 2% per degree C but at the highest speed this increased to approximately 10% per degree C.  相似文献   

6.
This study was designed to investigate the effect of mechanical vibration on acute power output in the bench press exercise. Ten male subjects who were experienced in resistance training participated in this study. Each subject performed 3 sets of 3 repetitions in the bench press exercise using a load equal to 70% of 1 repetition maximum in each of 2 sessions separated by 3 days. One session served as the experimental (vibration) condition, whereas the other session served as the control (no vibration) condition. The intervention (vibration or control) was applied between sets 2 and 3. The vibration was applied by a vibrating barbell apparatus held by the subjects while lying supine on a bench. The only difference between the 2 conditions was the vibration of the barbell apparatus during the vibration condition. Peak and average power were calculated during each bench press set to determine whether power output differed following vibration compared to control. Average power was significantly higher for the vibration condition compared to the control (525 +/- 74 vs. 499 +/- 71 W; p = 0.01). There was also a trend toward an increase in peak power in the vibration condition (846 +/- 168 by vs. 799 +/- 149 W; p = 0.06). In general, peak and average power output were higher following the vibration intervention compared to control. However, the sets prior to vibration application during the vibration condition also demonstrated higher power outputs compared with the control condition, which contributed to the main effect for the vibration condition. These results suggest that factors other than the vibration intervention influenced task performance during the vibration condition. We suggest that psychological factors related to the novelty of the vibration intervention were involved. These factors may partially explain the conflicting results of previous investigations that examined vibration as an exercise intervention.  相似文献   

7.
The purpose of this study was to compare the physiological adaptations to basic head-out aquatic exercises with different levels of body immersion. Sixteen young and clinically healthy subjects (9 women and 7 men) volunteered to participate in this study. Each subject performed 3 repetitions (on land, immersed to the hip, and immersed to the breast) of the aquatic exercise "rocking horse" for 6 minutes. The rating of perceived effort (RPE), the maximal heart rate achieved during the exercitation (HRmax), the percentage of the maximal theoretical heart rate estimated (%HRmax), the peak of oxygen uptake during the exercise (V(.-)O2peak), and the energy expenditure (EE) were evaluated. The RPE was significantly higher when exercising immersed to the hip than on land (p < 0.01) and immersed to the breast (p = 0.03). The HRmax and %HRmax were significantly lower when exercising with immersion to the breast than on land (p < 0.01) and with immersion to the hip (p < 0.01). The V(.-)O2peak was significantly different between all conditions. The lower mean value was verified when exercising immersed to the breast, followed by immersion to the hip and on land. The EE was significantly higher when performing aquatic exercises on land than when immersed to the hip (p = 0.02) and the breast (p < 0.01). So, physiological responses when exercising immersed to the hip are higher than when immersed to the breast. The physiological responses when exercising on land are higher than when exercising with immersion to the hip and to the breast.  相似文献   

8.
ABSTRACT: Burden, RJ and Glaister, M. The effects of ionized and nonionized compression garments on sprint and endurance cycling. J Strength Cond Res 26(10): 2837-2843, 2012-The aim of this study was to examine the effects of ionized and nonionized compression tights on sprint and endurance cycling performance. Using a randomized, blind, crossover design, 10 well-trained male athletes (age: 34.6 ± 6.8 years, height: 1.80 ± 0.05 m, body mass: 82.2 ± 10.4 kg, V[Combining Dot Above]O2max: 50.86 ± 6.81 ml·kg·min) performed 3 sprint trials (30-second sprint at 150% of the power output required to elicit V[Combining Dot Above]O2max [pV[Combining Dot Above]O2max] + 3 minutes recovery at 40% pV[Combining Dot Above]O2max + 30-second Wingate test + 3 minutes recovery at 40% pV[Combining Dot Above]O2max) and 3 endurance trials (30 minutes at 60% pV[Combining Dot Above]O2max + 5 minutes stationary recovery + 10-km time trial) wearing nonionized compression tights, ionized compression tights, or standard running tights (control). There was no significant effect of garment type on key Wingate measures of peak power (grand mean: 1,164 ± 219 W, p = 0.812), mean power (grand mean: 716 ± 68 W, p = 0.800), or fatigue (grand mean: 66.5 ± 6.9%, p = 0.106). There was an effect of garment type on blood lactate in the sprint and the endurance trials (p < 0.05), although post hoc tests only detected a significant difference between the control and the nonionized conditions in the endurance trial (mean difference: 0.55 mmol·L, 95% likely range: 0.1-1.1 mmol·L). Relative to control, oxygen uptake (p = 0.703), heart rate (p = 0.774), and time trial performance (grand mean: 14.77 ± 0.74 minutes, p = 0.790) were unaffected by either type of compression garment during endurance cycling. Despite widespread use in sport, neither ionized nor nonionized compression tights had any significant effect on sprint or endurance cycling performance.  相似文献   

9.
ABSTRACT: Thatcher, R, Gifford, R, and Howatson, G. The influence of recovery duration after heavy resistance exercise on sprint cycling performance. J Strength Cond Res 26(11): 3089-3094, 2012-The aim of this study was to determine the optimal recovery duration after prior heavy resistance exercise (PHRE) when performing sprint cycling. On 5 occasions, separated by a minimum of 48 hours, 10 healthy male subjects (mean ± SD), age 25.5 ± 7.7 years, body mass 82.1 ± 9.0 kg, stature 182.6 ± 87 cm, deadlift 1-repetition maximum (1RM) 142 ± 19 kg performed a 30-second sprint cycling test. Each trial had either a 5-, 10-, 20-, or 30-minute recovery after a heavy resistance activity (5 deadlift repetitions at 85% 1RM) or a control trial with no PHRE in random order. Sprint cycling performance was assessed by peak power (PP), fatigue index, and mean power output over the first 5 seconds (MPO5), 10 seconds (MPO10), and 30 seconds (MPO30). One-way analysis of variance with repeated measures followed by paired t-tests with a Bonferroni adjustment was used to analyze data. Peak power, MPO5, and MPO10 were all significantly different during the 10-minute recovery trial to that of the control condition with values of 109, 112, and 109% of control, respectively; no difference was found for the MPO30 between trials. This study supports the use of PHRE as a strategy to improve short duration, up to, or around 10-second, sprint activity but not longer duration sprints, and a 10-minute recovery appears to be optimal to maximize performance.  相似文献   

10.
The effect of fatigue as a result of a standard submaximal dynamic exercise on maximal short-term power output generated at different contraction velocities was studied in humans. Six subjects performed 25-s maximal efforts on an isokinetic cycle ergometer at five different pedaling rates (60, 75, 90, 105, and 120 rpm). Measurements of maximal power output were made under control conditions [after 6 min of cycling at 30% maximal O2 uptake (VO2max)] and after fatiguing exercise that consisted of 6 min of cycling at 90% VO2max with a pedaling rate of 90 rpm. Compared with control values, maximal peak power measured after fatiguing exercise was significantly reduced by 23 +/- 19, 28 +/- 11, and 25 +/- 11% at pedaling rates of 90, 105, and 120 rpm, respectively. Reductions in maximum peak power of 11 +/- 8 and 14 +/- 8% at 60 and 75 rpm, respectively, were not significant. The rate of decline in peak power during the 25-s control measurement was least at 60 rpm (5.1 +/- 2.3 W/s) and greatest at 120 rpm (26.3 +/- 13.9 W/s). After fatiguing exercise, the rate of decline in peak power at pedaling rates of 105 and 120 rpm decreased significantly from 21.5 +/- 9.0 and 26.3 +/- 13.9 W/s to 10.0 +/- 7.3 and 13.3 +/- 6.9 W/s, respectively. These experiments indicate that fatigue induced by submaximal dynamic exercise results in a velocity-dependent effect on muscle power. It is suggested that the reduced maximal power at the higher velocities was due to a selective effect of fatigue on the faster fatigue-sensitive fibers of the active muscle mass.  相似文献   

11.
The purpose of this study was to investigate the acute effects of 3 types of stretching-static, dynamic, and proprioceptive neuromuscular facilitation (PNF)-on peak muscle power output in women. Concentric knee extension power was measured isokinetically at 60 degrees x s(-1) and 180 degrees x s(-1) in 12 healthy and recreationally active women (mean age +/- SD, 24 +/- 3.3 years). Testing occurred before and after each of 3 different stretching protocols and a control condition in which no stretching was performed. During 4 separate laboratory visits, each subject performed 5 minutes of stationary cycling at 50 W before performing the control condition, static stretching protocol, dynamic stretching protocol, or PNF protocol. Three submaximal warm-up trials preceded 3 maximal knee extensions at each testing velocity. A 2-minute rest was allowed between testing at each velocity. The results of the statistical analysis indicated that none of the stretching protocols caused a decrease in knee extension power. Dynamic stretching produced percentage increases (8.9% at 60 degrees x s(-1) and 6.3% at 180 degrees x s(-1)) in peak knee extension power at both testing velocities that were greater than changes in power after static and PNF stretching. The findings suggest that dynamic stretching may increase acute muscular power to a greater degree than static and PNF stretching. These findings may have important implications for athletes who participate in events that rely on a high level of muscular power.  相似文献   

12.
This study investigated the post-activation performance enhancements (PAPE) induced by a high-intensity single set of accentuated eccentric isoinertial resistance exercise on vertical jump performance. Twenty physically active male university students performed, in randomized counterbalanced order, two different conditioning activities (CA) after a general preestablished warm-up: a conditioning set of 6 maximum repetitions at high intensity (i.e., individualized optimal moment of inertia [0.083 ± 0.03 kg·m-2]) of the flywheel half-squat exercise in the experimental condition, or a set of 6 maximal countermovement jumps (CMJ) instead of the flywheel exercise in the control condition. CMJ height, CMJ concentric peak power and CMJ concentric peak velocity were assessed at baseline (i.e., 3 minutes after the warm-up) and 4, 8, 12, 16 and 20 minutes after the CA in both experimental and control protocols. Only after the experimental protocol were significant gains in vertical jump performance (p < 0.05, ES range 0.10–1.34) at 4, 8, 12, 16 and 20 minutes after the CA observed. In fact, the experimental protocol showed greater (p < 0.05) CMJ height, concentric peak power and concentric peak velocity enhancements compared to the control condition. In conclusion, a single set of high-intensity flywheel training led to PAPE in CMJ performance after 4, 8, 12, 16 and 20 minutes in physically active young men.  相似文献   

13.
Because results in literature are discrepant with regard to the effects of water immersion (WI) on the release of norepinephrine (NE) in humans, the following study was performed. Simultaneous measurements of plasma NE, central cardiovascular variables, and renal sodium excretion were conducted in eight normal male subjects on 2 study days; 6 h of thermoneutral (35.0 degrees C) WI to the neck were preceded and followed by 1 h in the seated posture outside the water and 8 h of a seated control period. During the control period, the subjects wore a water-perfused garment (water temperature 34.6 degrees C) to obtain the same skin temperature as during WI. The subjects were fluid restricted overnight and kept in this condition throughout the study. Compared with the prestudy, post-study, and control periods, plasma NE decreased significantly by 61% during WI. Simultaneously, central venous pressure, cardiac output, stroke volume, systolic arterial pressure, and arterial pulse pressure increased, whereas heart rate decreased. Renal sodium excretion and urine flow rate increased. In conclusion, the release of NE is suppressed in humans during immersion. This decrease probably reflects a decrease in sympathetic nervous activity initiated by stimulation of low- and high-pressure baroreceptors. It is possible that the decrease in NE acts as one of several mechanisms of the natriuresis and diuresis of immersion in humans.  相似文献   

14.
The hypothesis that reduced cardiac filling, as a result of lower body negative pressure (LBNP) and postexercise hypotension (PEH), would attenuate the reflex changes to heart rate (HR), skin blood flow (SkBF), and mean arterial pressure (MAP) normally induced by facial immersion was tested. The purpose of this study was to investigate the cardiovascular control mechanisms associated with apneic facial immersion during different cardiovascular challenges. Six subjects randomly performed 30-s apneic facial immersions in 6.0 +/- 1.2 degrees C water under the following conditions: 1) -20 mmHg LBNP, 2) +40 mmHg lower body positive pressure (LBPP), 3) during a period of PEH, and 4) normal resting (control). Measurements included SkBF at one acral (distal phalanx of the thumb) and one nonacral region of skin (ventral forearm), HR, and MAP. Facial immersion reduced HR and SkBF at both sites and increased MAP under all conditions (P < 0.05). Reduced cardiac filling during LBNP and PEH significantly attenuated the absolute HR nadir observed during the control immersion (P < 0.05). The LBPP condition did not result in a lower HR nadir than control but did result in a nadir significantly lower than that of the LBNP and PEH conditions (P < 0.05). No differences were observed in either SkBF or MAP between conditions; however, the magnitude of SkBF reduction was greater at the acral site than at the nonacral site for all conditions (P < 0.05). These results suggest that the cardiac parasympathetic response during facial immersion can be attenuated when cardiac filling is compromised.  相似文献   

15.
Whole-body vibration (WBV) may potentiate vertical jump (VJ) performance via augmented muscular strength and motor function. The purpose of this study was to evaluate the effect of different rest intervals after WBV on VJ performance. Thirty recreationally trained subjects (15 men and 15 women) volunteered to participate in 4 testing visits separated by 24 hours. Visit 1 acted as a familiarization visit where subjects were introduced to the VJ and WBV protocols. Visits 2-4 contained 2 randomized conditions per visit with a 10-minute rest period between conditions. The WBV was administered on a pivotal platform with a frequency of 30 Hz and an amplitude of 6.5 mm in 4 bouts of 30 seconds for a total of 2 minutes with 30 seconds of rest between bouts. During WBV, subjects performed a quarter squat every 5 seconds, simulating a countermovement jump (CMJ). Whole-body vibration was followed by 3 CMJs with 5 different rest intervals: immediate, 30 seconds, 1 minute, 2 minutes, or 4 minutes. For a control condition, subjects performed squats with no WBV. There were no significant (p > 0.05) differences in peak velocity or relative ground reaction force after WBV rest intervals. However, results of VJ height revealed that maximum values, regardless of rest interval (56.93 ± 13.98 cm), were significantly (p < 0.05) greater than the control condition (54.44 ± 13.74 cm). Therefore, subjects' VJ height potentiated at different times after WBV suggesting strong individual differences in optimal rest interval. Coaches may use WBV to enhance acute VJ performance but should first identify each individual's optimal rest time to maximize the potentiating effects.  相似文献   

16.
The purpose of this investigation was to examine the acute effects of whole-body vibration (WBV) on muscular strength, flexibility, and heart rate (HR). Twenty adults (10 men, 10 women) untrained to WBV participated in the study. All subjects completed assessment of lower-extremity isokinetic torque, flexibility, and HR immediately before and after 6 minutes of WBV and 6 minutes of leg cycling ergometry (CYL), in randomized order. During WBV, subjects stood upright on a vibration platform for a total of 6 minutes. Vibration frequency was gradually increased during the first minute to a frequency of 26 Hz, which was maintained for the remaining 5 minutes. During CYL, power output was gradually increased to 50 W during the first minute and maintained at that power output for the remaining 5 minutes. Lower-extremity flexibility was determined using the sit-and-reach box test. Peak and average isokinetic torque of knee extension and flexion were measured by means of a motor-driven dynamometer with velocity fixed at 120 degrees .s. Change scores for the outcome measures were compared between treatments using Student's paired t-tests. Analysis revealed significantly greater HR acceleration with CYL (24.7 bpm) than after WBV (15.8 bpm). The increase of sit-and-reach scores after WBV (4.7 cm) was statistically greater (p < 0.05) than after CYL (0.8 cm). After WBV, increases in peak and average isokinetic torque of knee extension, 7.7% and 9.6%, were statistically greater than after CYL (p < 0.05). Average torque of knee flexion also increased more with WBV (+7.8%) than with CYL (-1.5%) (p < 0.05). The findings of this study indicate that short-term WBV standing elicits acute enhancements of lower-extremity muscular torque and flexibility, suggesting the application of this technology as a preparatory activity before more intense exercise.  相似文献   

17.
The effects of 12 weeks of a low-intensity general conditioning programme on maximal instantaneous peak power (Wpeak) and maximal oxygen uptake (VO2max) were examined in 20 elderly women. After medical, familiarisation, and ethical procedures, the subjects were randomly divided into either a training and or a control group. The training group [n = 11; mean (SD) age 63.0 (3.1) years] agreed to take part in a 12-week training programme at an exercise intensity kept under 60% of the heart rate reserve for about 60 min, 3 times a week. The control group [n = 9; mean (SD) age 63.5 (3.3) years] did not perform any particular physical training. Before and after the training period, all participants underwent anthropometric measures and a maximal cycling test to exhaustion to measure their VO2max. In addition, Wpeak was determined 1 week later by the subjects performing a vertical jump from a squatting position on a force platform. Following training, neither the anthropometric characteristics nor the VO2max changed in either of the groups. In contrast, Wpeak increased significantly (P < 0.001) in the training group, but did not change in the control group. This result could be interpreted as the result of an improved level of neuromuscular activation. Furthermore, it shows that although muscle power declines with age at a faster rate than does aerobic power, its sensitivity to training seems to be higher than that of the aerobic system.  相似文献   

18.
The purpose of this study was to examine oxygen consumption (VO2) and heart rate kinetics during moderate and repeated bouts of heavy square-wave cycling from an exercising baseline. Eight healthy, male volunteers performed square-wave bouts of leg ergometry above and below the gas exchange threshold separated by recovery cycling at 35% VO2 peak. VO2 and heart rate kinetics were modeled, after removal of phase I data by use of a biphasic on-kinetics and monoexponential off-kinetics model. Fingertip capillary blood was sampled 45 s before each transition for base excess, HCO and lactate concentration, and pH. Base excess and HCO concentration were significantly lower, whereas lactate concentration and pH were not different before the second bout. The results confirm earlier reports of a smaller mean response time in the second heavy bout. This was the result of a significantly greater fast-component amplitude and smaller slow-component amplitude with invariant fast-component time constant. A role for local oxygen delivery limitation in heavy exercise transitions with unloaded but not moderate baselines is presented.  相似文献   

19.
Incidence of cardiovascular events follows a circadian rhythm with peak occurrence during morning. Disturbance of autonomic control caused by exercise had raised the question of the safety in morning exercise and its recovery. Furthermore, we sought to investigate whether light aerobic exercise performed at night would increase HR and decrease HRV during sleep. Therefore, the aim of this study was to test the hypothesis that morning exercise would delay HR and HRV recovery after light aerobic exercise, additionally, we tested the impact of late night light aerobic exercise on HR and HRV during sleep in sedentary subjects. Nine sedentary healthy men (age 24 ± 3 yr; height 180 ± 5 cm; weight 79 ± 8 kg; fat 12 ± 3%; mean±SD) performed 35 min of cycling exercise, at an intensity of first anaerobic threshold, at three times of day (7 a.m., 2 p.m. and 11 p.m.). R-R intervals were recorded during exercise and during short-time (60 min) and long-time recovery (24 hours) after cycling exercise. Exercise evoked increase in HR and decrease in HRV, and different times of day did not change the magnitude (p < 0.05 for time). Morning exercise did not delay exercise recovery, HR was similar to rest after 15 minutes recovery and HRV was similar to rest after 30 minutes recovery at morning, afternoon, and night. Low frequency power (LF) in normalized unites (n.u.) decreased during recovery when compared to exercise, but was still above resting values after 60 minutes of recovery. High frequency power (HF-n.u.) increased after exercise cessation (p < 0.05 for time) and was still below resting values after 60 minutes of recovery. The LF/HF ratio decreased after exercise cessation (p < 0.05 for time), but was still different to baseline levels after 60 minutes of recovery. In conclusion, morning exercise did not delay HR and HRV recovery after light aerobic cycling exercise in sedentary subjects. Additionally, exercise performed in the night did change autonomic control during the sleep. So, it seems that sedentary subjects can engage physical activity at any time of day without higher risk.  相似文献   

20.
We examined the effect of low and high glycemic index (GI) carbohydrate (CHO) feedings during a simulated 64-km cycling time trial (TT) in nine subjects ([mean +/- SEM], age = 30 +/- 1 years; weight = 77.0 +/- 2.6 kg). Each rider completed three randomized, double blind, counter-balanced, crossover rides, where riders ingested 15 g of low GI (honey; GI = 35) and high GI (dextrose; GI = 100) CHO every 16 km. Our results showed no differences between groups for the time to complete the entire TT (honey = 128 minutes, 42 seconds +/- 3.6 minutes; dextrose = 128 minutes, 18 seconds +/- 3.8 minutes; placebo = 131 minutes, 18 seconds +/- 3.9 minutes). However, an analysis of total time alone may not portray an accurate picture of TT performance under CHO-supplemented conditions. For example, when the CHO data were collapsed, the CHO condition (128 minutes, 30 seconds) proved faster than placebo condition (131 minutes, 18 seconds; p < 0.02). Furthermore, examining the percent differences and 95% confidence intervals (CI) shows the two CHO conditions to be generally faster, as the majority of the CI lies in the positive range: placebo vs. dextrose (2.36% [95% CI; -0.69, 4.64]) and honey (1.98% [95% CI; -0.30, 5.02]). Dextrose vs. honey was 0.39% (95% CI; -3.39, 4.15). Within treatment analysis also showed that subjects generated more watts (W) over the last 16 km vs. preceding segments for dextrose (p < 0.002) and honey (p < 0.0004) treatments. When the final 16-km W was expressed as a percentage of pretest maximal W, the dextrose treatment was greater than placebo (p < 0.05). A strong trend was noted for the honey condition (p < 0.06), despite no differences in heart rate (HR) or rate of perceived exertion (RPE). Our results show a trend for improvement in time and wattage over the last 16 km of a 64-km simulated TT regardless of glycemic index.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号