首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
An acid invertase from the fern Pteris deflexa Link was purified and the effect of reaction products on enzyme activity was studied. Fructose and glucose were competitive and non-competitive inhibitors of the enzyme, respectively. Since proteins suppressed glucose and fructose inhibition of the enzyme, an invertase modulation by reaction products is unlikely; nevertheless, an invertase proteinaceous inhibitor previously reported could have a role in this respect. The purified enzyme was an heterodimer M r 90,000 Daltons composed of subunits of 66,000 and 30,000 Daltons. The enzyme had β -fructofuranosidase activity and hydrolyzed mainly sucrose but also raffinose and stachyose, with K m of 3.22, 10.80 and 38.50 mM, respectively. Invertase activity with an optimum pH at 5.0 was present in almost every leaf fern tissue. Pinnas (sporophyll leaflets) had the higher enzyme levels. Invertase histochemical and immunochemical localization studies showed the enzyme mainly in phloem cells. Epidermis, collenchyma and parenchyma cells also showed invertase protein.  相似文献   

2.
An intracellular invertase was induced in cultures of Clostridium pasteurianum utilizing sucrose as its carbon source for growth. This enzyme synthesis could be repressed by the addition of fructose of a sucrose-growing culture. In contrast, invertase activity was not affected by the addition of glucose to sucrose-growing cells and this enzyme could be induced in a glucose-metabolizing culture by the addition of sucrose. This enzyme was purified 10.5-fold over the induced lese, EC 3.2.1.26) by substrate-specificity studies. Invertase had a pH optimum of 6.5 and an apparent Km of 79.5 mM for sucrose, and required high concentration of potassium phosphate for maximum activity. Invertase was completely inactivated by a 2-min heat treatment at 60 degrees C. This enzyme was strongly inhibited by p-hydroxymercuribenzoate (pCMB) and weakly inhibited by 5,5'-dithiobis(2-nitrobenzoic acid), while cysteine could substantially reverse pCMB) inhibition, suggesting that sulfhydryl group(s) were necessary for invertase activity.  相似文献   

3.
Characterization of invertase activity from cariogenic Streptococcus mutans   总被引:17,自引:0,他引:17  
Invertase activity from Streptococcus mutans GS-5 has been partially purified and shown to possess beta-fructofuranosidase specificity. The enzyme has a broad pH optimum between pH 5.5 and 7.5 and exhibits maximal activity at 37 C. Fructose, but not the glucose analogue alpha-methyl-d-glucoside, acts as a competitive inhibitor of the enzyme. None of the common glycolytic intermediates or adenine nucleotides had any significant effect on enzyme activity. A molecular weight of approximately 47,000 was estimated for the enzyme. The enzyme does not appear to be catabolically repressed by glucose nor inducible by sucrose. Higher specific activities of the enzyme are observed in fructose or glucose-grown cells compared to sucrose-grown cells. These results are discussed in terms of the regulation of invertase activity in vivo.  相似文献   

4.
5.
D M Obenland  U Simmen  T Boller    A Wiemken 《Plant physiology》1993,101(4):1331-1339
Three soluble isoforms of invertase (beta-fructofuranosidase; EC 3.2.1.26) were purified from 7-d-old primary leaves of barley (Hordeum vulgare L.). Invertase I, a monomeric protein of 64 kD, was purified to apparent homogeneity as shown by sodium dodecylsulfate-polyacrylamide gel electrophoresis. Invertases IIA and IIB, multimeric proteins with molecular masses of the 116 and 155 kD, were purified 780- and 1370-fold, respectively, but were not yet homogeneous. Extracts of epidermal strips of leaves contained only invertase IIB. The specific activity of invertase was more than 100-fold higher in the epidermis than in the mesophyll. All three isoforms were acidic invertases, with pH optima of around 5.0 and little activity in the alkaline range. Invertase I had a Km for sucrose of 8.1 mM, and invertases IIA and IIB had much lower values of 1.0 and 1.7 mM, respectively. Invertase I was more than 2-fold more resistant than the other two invertases to the inhibitors HgCl2 and pyridoxal. All three constitutive invertases were found to act also as sucrose-sucrose fructosyltransferases when supplied with high concentrations of sucrose, forming 1-kestose as principal product. However, the fructosyltransferase activity of all three enzymes was inhibited by pyridoxal in the same way as their invertase activity. This characteristic clearly differentiates them from the inducible sucrose-sucrose fructosyltransferase of barley leaves, the activity responsible for the initial steps of fructan biosynthesis, which has previously been shown to be insensitive to pyridoxal.  相似文献   

6.
Invertase was ionically immobilized on the poly(ethylene-co-vinyl alcohol) hollow fiber inside surface, which was aminoacetalized with 2-dimethylaminoacetaldehyde dimethyl acetal. Immobilization and enzyme reaction were carried out by letting the respective solutions pass or circulate through the inside of the hollow fiber, and the activity of invertase was determined by the amount of glucose produced enzymatically from sucrose. Immobilization conditions were examined with respect to the enzyme concentration and to the time, and consequently the preferable conditions at room temperature were found to be 5 mug/mL of enzyme concentration and 4 h of immobilization time. Under those conditions the immobilization yield and the ratio of the activity of the immobilized invertase to that of the native one were 89 and 80%, respectively. For both repeating and continuous usages, the activity fell to ca. 60% of the initial activity in the early stage and after that almost kept that value. The apparent Michaelis constant K(m) (') for the immobilized invertase decreased with increasing the flow rate of the substrate solution, to be close to the value for the native one. Furthermore, the possibility of the separation of the enzymatically formed glucose from the reaction mixture through the hollow fiber membrane was preliminarily examined.  相似文献   

7.
川西高山林线交错带凋落叶分解初期转化酶特征   总被引:1,自引:1,他引:0  
胞外酶对于有机质的降解具有重要的作用。在凋落物分解过程中,酶活性不仅受到凋落物种类或基质质量的影响,还受到环境因素的影响。转化酶催化蔗糖水解为葡萄糖和果糖,因此在凋落物分解早期,转化酶比降解难分解物质的酶具有更重要的作用。以川西高山林线交错带12种代表性凋落叶为研究对象,对林线交错带不同植被类型下的凋落叶转化酶活性以及物种和环境因子对转化酶活性的影响进行了研究。结果表明:同一植被类型下,12个物种转化酶活性具有极显著差异(P0.01)。物种、环境因子及其交互作用对转化酶活性有极显著的影响(P0.01)。初始纤维素含量与转化酶活性极显著正相关(P0.01)。初始木质素和总酚含量与转化酶活性极显著负相关(P0.01),能够共同解释转化酶活性变异的50.8%。不同植物生活型中,禾草类转化酶活性均为最高,这可能与禾草类较高的初始纤维素含量、较低的木质素和总酚含量有关。多元线性回归分析表明,凋落叶含水量能单独解释转化酶活性变量的62.1%,是环境因子中最重要的变量。从植被类型来看,大多数物种的转化酶活性在针叶林中均极显著高于高山草甸和灌丛(P0.01),这可能与针叶林中凋落叶的含水量最高且雪被最厚有关。历经一个雪被期分解后,凋落叶初始质量与环境因子的综合作用能够解释转化酶活性变异的79.1%,表明川西高山林线交错带凋落叶分解前期转化酶活性主要受初始木质素含量、总酚含量和含水量的调控。在全球气候变化情景下,凋落物水分含量的变化将会强烈的影响凋落叶分解前期的转化酶活性。  相似文献   

8.
Regeneration of Invertase in Neurospora crassa   总被引:2,自引:2,他引:0       下载免费PDF全文
  相似文献   

9.
Guan HP  Janes HW 《Plant physiology》1991,96(3):922-927
Effects of light on carbohydrate levels and certain carbon metabolizing enzyme activities were studied during the early development of tomato (Lycopersicon esculentum) fruit. Sucrose levels were low and continued to decline during development and were unaffected by light. Starch was significantly greater in light. Invertase activity was similar in both light- and dark-grown fruit. Sucrose synthase activity was much lower than invertase and showed a slight decrease in light-grown fruit between days 21 and 28. Light-grown fruit also had higher ADP glucose pyrophosphorylase activity than dark-grown fruit, which was correlated with higher starch levels. The rapidly decreasing activity of ADP glucose pyrophosphorylase during early fruit development in the dark in conjunction with reduced starch levels and rates of accumulation indicates that ADP glucose pyrophosphorylase is crucial for carbon import and storage in tomato. The differential stimulation of ADP glucose pyrophosphorylase activity from light- and dark-grown tissue by 3-phosphoglycerate suggests that this enzyme may be allosterically altered by light.  相似文献   

10.
Plant invertases play important roles in sucrose metabolism. Cell wall invertase was reported to participate in phloem loading and unloading. Soluble invertases would be involved in hexose level regulation in mature tissues and in stored sucrose utilization within vacuoles. Invertase inhibitory proteins were described as one of the possible mechanisms for invertase activity regulation in some plant species; nevertheless, these proteins were found only in sink tissues, suggesting that this mechanism would not be relevant in the sucrose turnover of leaves. This report describes the purification of invertase from Pteris deflexa fronds and the occurrence of an invertase inhibitory protein in this fern organ, as well as its purification and invertase-inhibitor interactions. The Mr of the invertase and of its inhibitory protein were 90,000 and 18,000, respectively. SDS-PAGE in the presence of 2-mercaptoetanol gave two subunits for the enzyme (Mr=66,000 and 30,000) and only one for the inhibitor. The inhibitor protein is a glycoprotein (12% w/w of neutral sugars) that did not show agglutinating activity like some others, and also showed a high heat stability at pH 5.0. The optimum pH of invertase activity is 5.0, while invertase inhibitory protein caused maximal inhibition at the same pH value. Invertase-inhibitor complex formation occurs in an immediate manner and a protease activity was discarded. The inhibition is non-competitive (Ki=1.5 × 10 ?6 M) without interactions among the binding sites. The complex is slightly dissociable and sucrose was able to partially reduce the inhibitory effect. Up to the present, invertase inhibitory proteins have been found solely in heterotrophic tissues. In this work we demonstrate that this protein is also present in an autotrophic tissue of a lower vascular plant.  相似文献   

11.
Plant invertases play important roles in sucrose metabolism. Cell wall invertase was reported to participate in phloem loading and unloading. Soluble invertases would be involved in hexose level regulation in mature tissues and in stored sucrose utilization within vacuoles. Invertase inhibitory proteins were described as one of the possible mechanisms for invertase activity regulation in some plant species; nevertheless, these proteins were found only in sink tissues, suggesting that this mechanism would not be relevant in the sucrose turnover of leaves. This report describes the purification of invertase from Pteris deflexa fronds and the occurrence of an invertase inhibitory protein in this fern organ, as well as its purification and invertase-inhibitor interactions. The Mr of the invertase and of its inhibitory protein were 90,000 and 18,000, respectively. SDS-PAGE in the presence of 2-mercaptoetanol gave two subunits for the enzyme (Mr=66,000 and 30,000) and only one for the inhibitor. The inhibitor protein is a glycoprotein (12% w/w of neutral sugars) that did not show agglutinating activity like some others, and also showed a high heat stability at pH 5.0. The optimum pH of invertase activity is 5.0, while invertase inhibitory protein caused maximal inhibition at the same pH value. Invertase-inhibitor complex formation occurs in an immediate manner and a protease activity was discarded. The inhibition is non-competitive (Ki=1.5 x 10(-6) M) without interactions among the binding sites. The complex is slightly dissociable and sucrose was able to partially reduce the inhibitory effect. Up to the present, invertase inhibitory proteins have been found solely in heterotrophic tissues. In this work we demonstrate that this protein is also present in an autotrophic tissue of a lower vascular plant.  相似文献   

12.
Invertase from a white table wine made from Semillon grapes was purified to homogeneity on polyacrylamide gel electrophoresis. The enzymatic and physicochemical properties of the enzyme were compared with those of invertase purified from Semillon grape juice. The invertases from the two sources showed similar properties, suggesting that the wine invertase originated from the juice and was stable during the vinification and aging processes.  相似文献   

13.
Invertase activity associated with the walls of Solanum tuberosum tubers   总被引:4,自引:0,他引:4  
Three fractions with invertase activity (beta-D-fructofuranoside fructohydrolase, EC 3.2.1.26) were isolated from mature Solanum tuberosum tubers: acid soluble invertase, invertase I and invertase II. The first two invertases were purified until electrophoretic homogeneity. They are made by two subunits with an apparent M(r) value of 35,000 and their optimal pH is 4.5. Invertase I was eluted from cell walls with ionic strength while invertase II remained tightly bound to cell walls after this treatment. This invertase was solubilized by enzymatic cell wall degradation (solubilized invertase II). Their K(m)s are 28, 20, 133 and 128 mM for acid soluble invertase, invertase I, invertase II and solubilized invertase II, respectively. Glucose is a non-competitive inhibitor of invertase activities and fructose produces a two site competitive inhibition with interaction between the sites. Bovine serum albumin produces activation of the acid soluble invertase and invertase I while a similar inhibition by lectins and endogenous proteinaceous inhibitor from mature S. tuberosum tubers was found. Invertase II (tightly bound to the cell walls) shows a different inhibition pattern. The test for reassociation of the acid soluble invertase or invertase I on cell wall, free of invertase activity, caused the reappearance of all invertase forms with their respective solubilization characteristics and molecular and kinetic properties. The invertase elution pattern, the recovery of cell wall firmly bound invertase and the coincidence in the immunological recognition, suggest that all three invertases may be originated from the same enzyme. The difference in some properties of invertase II and solubilized invertase II from the other two enzymes would be a consequence of the enzyme microenvironment in the cell wall or the result of its wall binding.  相似文献   

14.
Invertase from Candida utilis was immobilized on porous cellulose beads by an ionic-quanidino bond. The immobilized invertase showed optimum activity between pH 4.0 and 5.4, while the free enzyme had a sharp optimum at pH 4.1. Both temperature profiles were fairly similar up to 55 degrees C. However, above this temperature the immobilized enzyme was more stable than the free enzyme. From the temperature data, the activation energies were found to be 7,322 and 4,052 cal/g mol for the free and the immobilized enzyme, respectively. Candida invertase shows characteristics of substrate inhibition. Both the Km and Ki for the free and the immobilized enzymes were determined. The apparent Ki for the immobilized invertase was much higher than the Ki of the free enzyme, suggesting a diffusion effect. Immobilized invertase molecules deep in the pores only see sucrose concentrations much less than the bulk concentrations. Immobilization, thus, offers certain processing advantages in this regard.  相似文献   

15.
Alkaline invertase from sprouting soybean (Glycine max) hypocotyls was purified to apparent electrophoretic homogeneity by consecutive use of DEAE-cellulose, green 19 dye, and Cibacron blue 3GA dye affinity chromatography. This protocol produced about a 100-fold purification with about a 11% yield. The purified protein had a specific activity of 48 mumol of glucose produced mg-1 protein min-1 (pH 7.0) and showed a single protein band in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (PAGE) (58 kDa) and in native PAGE, as indicated by both protein and activity staining. The native enzyme molecular mass was about 240 kDa, suggesting a homotetrameric structure. The purified enzyme exhibited hyperbolic saturation kinetics with a Km (sucrose) near 10 mM and the enzyme did not utilize raffinose, maltose, lactose, or cellibose as a substrate. Impure alkaline invertase preparations, which contained acid invertase activity, on contrast, showed biphasic curves versus sucrose concentration. Combining equal activities of purified alkaline invertase with acid invertase resulted in a biphasic response, but there was a transition to hyperbolic saturation kinetics when the activity ratio, alkaline: acid invertase, was increased above unity. Alkaline invertase activity was inhibited by HgCl2, pridoxal phosphate, and Tris with respective Ki values near 2 microM, 5 microM, and 4 mM. Glycoprotein staining (periodic acid-Schiff method) was negative and alkaline invertase did not bind to two immobilized lectins, concanavalin A and wheat germ agglutinin; hence, the enzyme apparently is not a glycoprotein. The purified alkaline invertase, and a purified soybean acid invertase, was used to raise rabbit polyclonal antibodies. The alkaline invertase antibody preparation was specific for alkaline invertase and cross-reacted with alkaline invertases from other plants. Neither purified soybean alkaline invertases nor the crude enzyme from several plants cross-reacted with the soybean acid invertase antibody.  相似文献   

16.
Luscher M  Nelson CJ 《Plant physiology》1995,107(4):1419-1425
High concentrations of water-soluble carbohydrates, mainly fructan, accumulate in the growth zone of tall fescue (Festuca arundinacea Schreb.) leaf blades. We studied sucrose-hydrolyzing activities in the leaf growth zone because of their importance in carbohydrate partitioning. Sucrose hydrolysis in the basal 1.5 cm was largely due to fructosyltransferases, which had activities up to 10 times higher than in fully developed leaf tissue. Three fructosyltransferases (F1, F2, and F3) were purified from the leaf growth zone. Each synthesized, from either sucrose or 1-kestose, a mixture of trisaccharides and higher-order oligofructans identical with the low-degree of polymerization fructan extracted from similar plant tissue. The highly purified fructosyltransferases retained ability (13%) to transfer fructose from sucrose to water. Time-dependent and substrate-dependent studies, using sucrose as the substrate, showed proportional production of fructose and glucose, indicating that both products are from the same enzyme. Fructosyltransferase was calculated to contribute about half the total transfer of fructose to water in the basal 1.5 cm. Invertase activity increased to near 2.0 cm when fructosyl transfer to sucrose and other oligofructans decreased. Invertase was the major activity for sucrose hydrolysis at positions distal to 3.0 cm.  相似文献   

17.
Invertase (beta-d-fructofuranoside fructohydrolase, EC 3.2.1.26) and dextransucrase (alpha-1, 6-glucan: d-fructose 2-glucosyltransferase, EC 2.4.1.5) were purified from the culture fluids of Streptococcus mutans by chromatography on Sepharose 6B and diethylaminoethyl-cellulose followed by treatment with hydroxyapatite. Each of the enzyme preparations gave a single band when analyzed by either polyacrylamide gel electrophoresis or immunodiffusion. The antigenic determinant of invertase was different from that of dextransucrase on immunodiffusion. The pH optima were 5.25 for invertase and 5.75 for dextransucrase, and the K(m) values were 20 mM for invertase and 2.0 mM for dextransucrase. The molecular weights determined by sodium dodecyl sulfate gel electrophoresis were 160,000 for invertase and 170,000 for dextransucrase. The data obtained suggest that the dextransucrase had dextran-synthesizing activity and invertase-like activity.  相似文献   

18.
Invertase from a strain of Rhodotorula glutinis   总被引:1,自引:0,他引:1  
An invertase (beta-D-fructofuranoside fructohydrolase, EC 3.2.1.26) from Rhodotorula glutinis was purified by ammonium sulfate fractionation, gel filtration and anion exchange chromatography. Invertase molecular weight was estimated to be 100 kDa by analytical gel filtration and 47 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Molecular mass determinations indicated that the native enzyme exists as a homodimer. It is a glycoprotein that contains 19% carbohydrate. The enzyme attacks beta-D-fructofuranoside (raffinose, stachyose and sucrose) from the fructose end. It has a K(m) of 0.227 M and a V(max) of 0.096 micromol/min with sucrose as a substrate. Invertase activity is stable between pH 2.6 and 5.5 for 30 min, maximum activity being observed at pH 4.5. The activation energy was 6520 cal/mol. The enzyme is stable between 20 and 60 degrees C. Mg(2+) and Ca(2+) ions stimulated invertase activity 3-fold, while Fe(2+), K(+), Co(2+), Na(+) and Cu(2+) increased activity about 2-fold. The transfructosylation reaction could not be observed. This enzyme is of particular interest since it appears to have a high hydrolytic activity in 1 M sucrose solution. This fact would make the enzymatic hydrolysis process economically efficient for syrup production using by-products with high salt and sugar contents such as sugar cane molasses.  相似文献   

19.
Invertase from S. cerevisiae has been immobilized on porous silica matrix, formed using sol-gel chemistry, with surface area of approximately 650 m(2)/g. The co-condensation of silica sol with 3-aminopropyl(triethoxy)silane produced an amino-chemically surface modified silica gel (N-CSMG) with a very high ligand loading of 3.6 mmol/g SiO(2); significantly higher than commercially available matrices. Surface amine groups were activated with glutaraldehyde to produce GA-N-CSMG, and invertase covalently attached by the aldehyde. Invertase was used as a model enzyme to measure the immobilizing character of the GA-N-CSMG material. Using an optimized immobilization protocol, a very high loading of 723 mg invertase per gram GA-N-CSMG is obtained; 3-200-fold higher than values published in literature. The reproducible, immobilized activity of 246,000 U/g GA-N-CSMG is also greater than any other in literature. Immobilized invertase showed almost 99% retention of free enzyme activity and no loss in catalytic efficiency. The apparent kinetic parameters K(M) and V(M) were determined using the Michealis-Menten kinetic model. K(M) of the free invertase was 1.5 times greater than that of the immobilized invertase--indicating a higher substrate affinity of the immobilized invertase. These findings show considerable promise for this material as an immobilization matrix in industrial processes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号