首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
The fibrillin-1 (FBN1) gene mutations result in Marfan syndrome (MFS) and have a variety of phenotypic variations. This disease is involved in the skeletal, ocular and cardiovascular system. Here we analyzed genotype-phenotype correlation in two Chinese families with MFS. Two patients with thoracic aortic aneurysms and dissections were diagnosed as MFS according to the revised Ghent criteria. Peripheral blood samples were collected and genomic DNAs were isolated from available cases, namely, patient-1 and his daughter and son, and patient-2 and his parents. According to the next-generation sequencing results, the mutations in FBN1 were confirmed by direct sequencing. A heterozygous frameshift mutation in exon 12 of FBN1 was found in the proband-1 and his daughter. They showed cardiovascular phenotype thoracic aortic aneurysms and dissections, a life-threatening vascular disease, and atrial septal defect respectively. One de novo missense mutation in exon 50 of FBN1 was identified only in the patient-2, showing aortic root aneurysm and aortic root dilatation. Intriguingly, two novel mutations mainly caused the cardiovascular complications in affected family members. No meaningful mutations were found in these two patients by screening all exons of 428 genes related with cardiovascular disease. The high incidence of cardiovascular manifestations might be associated with the two novel mutations in exon 12 and 50 of FBN1.  相似文献   

5.

Background

Fibrillins 1 (FBN1) and 2 (FBN2) are components of microfibrils, microfilaments that are present in many connective tissues, either alone or in association with elastin. Marfan''s syndrome and congenital contractural arachnodactyly (CCA) result from dominant mutations in the genes FBN1 and FBN2 respectively. Patients with both conditions often present with specific muscle atrophy or weakness, yet this has not been reported in the mouse models. In the case of Fbn1, this is due to perinatal lethality of the homozygous null mice making measurements of strength difficult. In the case of Fbn2, four different mutant alleles have been described in the mouse and in all cases syndactyly was reported as the defining phenotypic feature of homozygotes.

Methodology/Principal Findings

As part of a large-scale N-ethyl-N-nitrosourea (ENU) mutagenesis screen, we identified a mouse mutant, Mariusz, which exhibited muscle weakness along with hindlimb syndactyly. We identified an amber nonsense mutation in Fbn2 in this mouse mutant. Examination of a previously characterised Fbn2-null mutant, Fbn2fp, identified a similar muscle weakness phenotype. The two Fbn2 mutant alleles complement each other confirming that the weakness is the result of a lack of Fbn2 activity. Skeletal muscle from mutants proved to be abnormal with higher than average numbers of fibres with centrally placed nuclei, an indicator that there are some regenerating muscle fibres. Physiological tests indicated that the mutant muscle produces significantly less maximal force, possibly as a result of the muscles being relatively smaller in Mariusz mice.

Conclusions

These findings indicate that Fbn2 is involved in integrity of structures required for strength in limb movement. As human patients with mutations in the fibrillin genes FBN1 and FBN2 often present with muscle weakness and atrophy as a symptom, Fbn2-null mice will be a useful model for examining this aspect of the disease process further.  相似文献   

6.
In this report we have described an affected sib in a large Turkish family who appears to have a new distinct dominantly-inherited blindness, scoliosis and arachnodactyly syndrome. The combination of clinical abnormalities in these patients did not initially suggest Marfan syndrome or other connective tissue disorders associated with ectopia lentis. The proband was a 16-year-old boy who was referred to our clinics for scoliosis. He had arachnodactyly of both fingers and toes. He had been suffering from progressive visual loss and strabismus since he was eight-years-old. His 20-year-old brother had severe kyphoscoliosis, and arachnodactyly of fingers and toes. He was 130 cm tall and was bilaterally blind. His 23-year-old sister had only eye findings but no arachnodactyly or scoliosis. His 60-year-old father had mild scoliosis, blindness and arachnodactyly and mother was normal. We performed routine mutation analyses in the genes FBN1, TGFBR1 and TGFBR2, but no mutation has been detected. Our Turkish patients are most likely affected by a hitherto unrecorded condition which is caused by an autosomal dominant gene defect with variable expression but we can not exclude multigenic inheritance. Further studies are needed to assess the contribution of sex influence to the syndrome because the female relative is less affected.  相似文献   

7.
Neonatal Marfan syndrome caused by an exon 25 mutation of the Fibrillin-1 gene: We describe a male infant with severe arachnodactyly, hypermobility of the fingers, flexion contractures of elbows, wrists, hips, and knees, microretrognathia, crumpled ears, rockerbottom feet, loose redundant skin, and lens dislocations. Cardiac valve insufficiency and aortic dilatation resulted in cardiac failure, decompensated with digitalisation and death occurred at the age of 4 months. This case represents the severe end of the clinical spectrum of Marfan syndrome, namely neonatal Marfan syndrome. Molecular diagnostic analyses confirmed a de novo exon 25 mutation in the FBN1 gene.  相似文献   

8.
Marfan syndrome is an autosomal dominant disease caused by mutations in the gene encoding for fibrillin-1 (FBN1). More than 1,000 FBN1 mutations have been identified, which may lead to multiple organ involvement, particularly of the ocular, skeletal, and cardiovascular systems. Mutations in exons 59–65 have been reported in the past to cause mild Marfan-like fibrillinopathies. We report a family with a mutation in exon 63 that manifests with significant cardiovascular system involvement such as aortic root dilatations, dissection of the aorta, and sudden death at a young age. Genetic analysis revealed that four related individuals are positive for a novel heterozygous Cys2633Arg mutation in exon 63. Their genotype–phenotype profile (based on the revised Ghent nosology) is described. We postulate that the Cys2633Arg mutation may manifest with significant and progressive enlargement of the aortic root, risk of aortic dissections, and minor skeletal abnormalities, without involving the ocular system (i.e., ectopia lentis).  相似文献   

9.
10.
Mutations in the FBN1 gene, which encodes fibrillin-1, cause Marfan syndrome (MFS) and have been associated with a wide range of milder, overlap phenotypes. The factors that modulate phenotypic severity, both between and within families, remain to be determined. This study examines the relationship between the FBN1 genotype and phenotype in families with extremely mild phenotypes and in those that show striking clinical variation among apparently affected individuals. In one family, clinically similar but etiologically distinct disorders are segregating independently. In another, somatic mosaicism for a mutant FBN1 allele is associated with subdiagnostic manifestations, whereas germ-line transmission of the identical mutation causes severe and rapidly progressive disease. A third family cosegregates mild mitral valve prolapse syndrome with a mutation in FBN1 that can be functionally distinguished from those associated with the classic MFS phenotype. These data have immediate relevance for the diagnostic and prognostic counseling of patients and their family members.  相似文献   

11.
汉族马凡综合征(MFS)患者FBN1基因两种新发突变分析   总被引:1,自引:0,他引:1  
为调查马凡综合征(Marfan syndrome, MFS)患者的原纤维蛋白-1(Fibrillin-1, FBN1)基因突变情况, 应用聚合酶链反应(PCR)和变性高效液相色谱法(Denaturing high-performance liquid chromatography, DHPLC)对MFS患者的FBN1基因进行突变筛查, 对DHPLC初筛异常的DNA片段进行测序分析。结果在两个MFS家系中发现FBN1基因两种新的突变: 一种为复合突变包含第55号外显子的缺失突变c.6862_6871delGGCTGTGTAG (p.Gly2288MetfsX109)、同义突变c.6861A>G和内含子的突变c.[6871+1_6871+11delGTAAGAGGATC; 6871+34dupCATCAGAAGTGACAGTGGACA]; 另一种为第20号外显子的错义突变c.2462G>A(p.Cys821Tyr)。研究表明, FBN1基因的缺失突变c.[6862_6871delGGCTGTGTAG; 6871+1_6871+11delGTAAGAGGATC] (p.Gly2288MetfsX109)和错义突变c.2462G>A(p.Cys821Tyr)可能分别是这两个家系患者的致病原因。  相似文献   

12.
目的:对患有急性间歇性血卟啉病先证者及其两位直系亲属进行基因突变的分析。方法:采用PCR和一代测序技术分别对患者的HMBS基因的外显子及其旁翼区进行序列分析。结果:检测出先证者HMBS基因11号外显子的旁翼区发生杂合突变c.651+2AG,为剪切突变;从先证者母亲以及女儿的HMBS基因上检测出同样的突变位点。结论:根据先证者的家族史、临床表现及相关代谢检查结果诊断为血卟啉病;基因检测结果提示先证者为急性间歇性血卟啉病;先证者的母亲和女儿存在同样的突变位点,提示先证者母亲及其女儿均患有急性间歇性血卟啉病。  相似文献   

13.
14.
Mutations in the FBN1 gene cause Marfan syndrome (MFS), a dominantly inherited connective tissue disease. Almost all the identified FBN1mutations have been family specific, and the rate of new mutations is high. We report here a de novo FBN1mutation that was identified in two sisters with MFS born to clinically unaffected parents. The paternity and maternity were unequivocally confirmed by genotyping. Although one of the parents had to be an obligatory carrier for the mutation, we could not detect the mutation in the leukocyte DNA of either parent. To identify which parent was a mosaic for the mutation we analyzed several tissues from both parents, with a quantitative and sensitive solid-phase minisequencing method. The mutation was not, however, detectable in any of the analyzed tissues. Although the mutation could not be identified in a sperm sample from the father or in samples of multiple tissue from the mother, we concluded that the mother was the likely mosaic parent and that the mutation must have occurred during the early development of her germ-line cells. Mosaicism confined to germ-line cells has rarely been reported, and this report of mosaicism for the FBN1 mutation in MFS represents an important case, in light of the evaluation of the recurrence risk in genetic counseling of families with MFS.  相似文献   

15.
16.
The Na(+)/glucose cotransporter gene SGLT1 was analyzed in a Japanese patient with congenital glucose-galactose malabsorption. Genomic DNA was used as a template for amplification by the polymerase chain reaction of each of the 15 exons of SGLT1. The amplification products were cloned and sequenced. About half of the exon 5 clones of the patient contained a C-->T transition, resulting in an Arg(135)-->Trp mutation, whereas the remaining clones contained the normal exon 5 sequence. In addition, whereas some exon 12 clones exhibited the normal sequence, others showed a CAgtaggtatcatc-->CAgacc mutation at the splice donor site of intron 12 that may result either in the skipping of exon 12 or in read-through of intron 12. Neither the Arg(135)-->Trp mutant nor either of the possible intron 12 mutant proteins exhibited Na(+)-dependent glucose transport activity when expressed in Xenopus oocytes. Immunocytochemical analysis indicated, however, that the Arg(135)-->Trp mutant was localized to the oocyte plasma membrane. DNA sequence analysis revealed that the missense mutation in exon 5 and the splice site mutation in intron 12 were inherited from the proband's father and mother, respectively. These results indicate that the patient is a compound heterozygote for this disease, and that the Arg(135)-->Trp mutant of SGLT1 undergoes normal trafficking to the plasma membrane but is non-functional.  相似文献   

17.
Our study of cytological phenotype of meiotic mutation pam resulted in detecting a failure of cytokinesis in mutant pollen mother cells in the form of a block of fusion of membrane vesicles of the cell plate, and an impossibility of formation of daughter cell membranes. The mutation does not disturb the division spindle structure and function. Asynchrony of meiosis in pam is the result of arrest of pollen mother cells at metaphase 1 and metaphase 2.  相似文献   

18.
The Marfan syndrome, an autosomal dominant heritable disorder of connective tissue, is caused by mutations in the gene for fibrillin-1, FBN1. A novel FBN1 mutation was identified using temperature-gradient gel electrophoresis of a reverse-transcribed polymerase chain reaction product spanning exons 14 to 16. The mutation, G1760A, is predicted to result in the amino acid substitution C587Y and thus to disrupt one of the disulfide bonds of the calcium-binding epidermal growth factor-like module encoded by exon 14. C587Y was found to be a de novo mutation in a relatively mildly affected 15-year-old girl whose clinical phenotype was characterized mainly by ectopia lentis and thoracic scoliosis. Metabolic labeling of cultured dermal fibroblasts from the affected patient demonstrated delayed secretion of fibrillin with normal synthesis and no decrease in incorporation into the extracellular matrix compartment. Fibrillin immunostaining of confluent dermal fibroblast cultures revealed no visible difference between the patient’s cells and control cells. Characterization of many different FBN1 mutations from different regions of the gene may provide a better understanding of clinical and biochemical genotype-phenotype relationships. Received: 31 October 1996 / Accepted: 3 March 1997  相似文献   

19.
Mutations in the fibrillin-1 (FBN1) gene cause Marfan syndrome (MFS) and have been associated with a wide range of overlapping phenotypes. Clinical care is complicated by variable age at onset and the wide range of severity of aortic features. The factors that modulate phenotypical severity, both among and within families, remain to be determined. The availability of international FBN1 mutation Universal Mutation Database (UMD-FBN1) has allowed us to perform the largest collaborative study ever reported, to investigate the correlation between the FBN1 genotype and the nature and severity of the clinical phenotype. A range of qualitative and quantitative clinical parameters (skeletal, cardiovascular, ophthalmologic, skin, pulmonary, and dural) was compared for different classes of mutation (types and locations) in 1,013 probands with a pathogenic FBN1 mutation. A higher probability of ectopia lentis was found for patients with a missense mutation substituting or producing a cysteine, when compared with other missense mutations. Patients with an FBN1 premature termination codon had a more severe skeletal and skin phenotype than did patients with an inframe mutation. Mutations in exons 24-32 were associated with a more severe and complete phenotype, including younger age at diagnosis of type I fibrillinopathy and higher probability of developing ectopia lentis, ascending aortic dilatation, aortic surgery, mitral valve abnormalities, scoliosis, and shorter survival; the majority of these results were replicated even when cases of neonatal MFS were excluded. These correlations, found between different mutation types and clinical manifestations, might be explained by different underlying genetic mechanisms (dominant negative versus haploinsufficiency) and by consideration of the two main physiological functions of fibrillin-1 (structural versus mediator of TGF beta signalling). Exon 24-32 mutations define a high-risk group for cardiac manifestations associated with severe prognosis at all ages.  相似文献   

20.
The yeast Saccharomyces cerevisiae reproduces by asymmetric cell division, or budding. In each cell division, the daughter cell is usually smaller and younger than the mother cell, as defined by the number of divisions it can potentially complete before it dies. Although individual yeast cells have a limited life span, this age asymmetry between mother and daughter ensures that the yeast strain remains immortal. To understand the mechanisms underlying age asymmetry, we have isolated temperature-sensitive mutants that have limited growth capacity. One of these clonal-senescence mutants was in ATP2, the gene encoding the beta-subunit of mitochondrial F(1), F(0)-ATPase. A point mutation in this gene caused a valine-to-isoleucine substitution at the ninetieth amino acid of the mature polypeptide. This mutation did not affect the growth rate on a nonfermentable carbon source. Life-span determinations following temperature shift-down showed that the clonal-senescence phenotype results from a loss of age asymmetry at 36 degrees, such that daughters are born old. It was characterized by a loss of mitochondrial membrane potential followed by the lack of proper segregation of active mitochondria to daughter cells. This was associated with a change in mitochondrial morphology and distribution in the mother cell and ultimately resulted in the generation of cells totally lacking mitochondria. The results indicate that segregation of active mitochondria to daughter cells is important for maintenance of age asymmetry and raise the possibility that mitochondrial dysfunction may be a normal cause of aging. The finding that dysfunctional mitochondria accumulated in yeasts as they aged and the propensity for old mother cells to produce daughters depleted of active mitochondria lend support to this notion. We propose, more generally, that age asymmetry depends on partition of active and undamaged cellular components to the progeny and that this "filter" breaks down with age.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号