首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
From an architectural point of view, the forebrain acts as a framework upon which the middle and upper face develops and grows. In addition to serving a structural role, we present evidence that the forebrain is a source of signals that shape the facial skeleton. In this study, we inhibited Sonic hedgehog (Shh) signaling from the neuroectoderm then examined the molecular changes and the skeletal alterations resulting from the treatment. One of the first changes we noted was that the dorsoventral polarity of the forebrain was disturbed, which manifested as a loss of Shh in the ventral telencephalon, a reduction in expression of the ventral markers Nkx2.1 and Dlx2, and a concomitant expansion of the dorsal marker Pax6. In addition to changes in the forebrain neuroectoderm, we observed altered gene expression patterns in the facial ectoderm. For example, Shh was not induced in the frontonasal ectoderm, and Ptc and Gli1 were reduced in both the ectoderm and adjacent mesenchyme. As a consequence, a signaling center in the frontonasal prominence was disrupted and the prominence failed to undergo proximodistal and mediolateral expansion. After 15 days of development, the upper beaks of the treated embryos were truncated, and the skeletal elements were located in more medial and proximal locations in relation to the skeletal elements of the lower jaw elements. These data indicate that a role of Shh in the forebrain is to regulate Shh expression in the face, and that together, these Shh domains mediate patterning within the frontonasal prominence and proximodistal outgrowth of the middle and upper face.  相似文献   

5.
The expression of the Dlx homeobox genes is closely associated with neurons that express gamma-aminobutyric acid (GABA) in the embryonic rostral forebrain. To test whether the Dlx genes are sufficient to induce some aspects of the phenotype of GABAergic neurons, we adapted the electroporation method to ectopically express DLX proteins in slice cultures of the mouse embryonic cerebral cortex. This approach showed that ectopic expression of Dlx2 and Dlx5 induced the expression of glutamic acid decarboxylases (GADs), the enzymes that synthesize GABA. We also used this method to show cross-regulation between different Dlx family members. We find that Dlx2 can induce Dlx5 expression, and that Dlx1, Dlx2 and Dlx5 can induce expression from a Dlx5/6-lacZ enhancer/"reporter construct.  相似文献   

6.
7.
8.
9.
Retinoic acid (RA) synthesized by Raldh3 in the frontonasal surface ectoderm of chick embryos has been suggested to function in early forebrain patterning by regulating Fgf8, Shh, and Meis2 expression. Similar expression of Raldh3 exists in E8.75 mouse embryos, but Raldh2 is also expressed in the optic vesicle at this stage suggesting that both genes may play a role in early forebrain patterning. Furthermore, Raldh3 is expressed later in the forebrain itself (lateral ganglionic eminence; LGE) starting at E12.5, suggesting a later role in forebrain neurogenesis. Here we have analyzed mouse embryos carrying single or double null mutations in Raldh2 and Raldh3 for defects in forebrain development. Raldh2(-/-);Raldh3(-/-) embryos completely lacked RA signaling activity in the early forebrain, but exhibited relatively normal expression of Fgf8, Shh, and Meis2 in the forebrain. Thus, we find no clear requirement for RA in controlling expression of these important forebrain patterning genes, but Raldh3 expression in the frontonasal surface ectoderm was found to be needed for normal Fgf8 expression in the olfactory pit. Our studies revealed that later expression of Raldh3 in the subventricular zone of the LGE is required for RA signaling activity in the ventral forebrain. Importantly, expression of dopamine receptor D2 in E18.5 Raldh3(-/-) embryos was essentially eliminated in the developing nucleus accumbens, a tissue lying close to the source of RA provided by Raldh3. Our results suggest that the role of RA during forebrain development begins late when Raldh3 expression initiates in the ventral subventricular zone.  相似文献   

10.
Considerable data suggest that sonic hedgehog (Shh) is both necessary and sufficient for the specification of ventral pattern throughout the nervous system, including the telencephalon. We show that the regional markers induced by Shh in the E9.0 telencephalon are dependent on the dorsoventral and anteroposterior position of ectopic Shh expression. This suggests that by this point in development regional character in the telencephalon is established. To determine whether this prepattern is dependent on earlier Shh signaling, we examined the telencephalon in mice carrying either Shh- or Gli3-null mutant alleles. This analysis revealed that the expression of a subset of ventral telencephalic markers, including Dlx2 and Gsh2, although greatly diminished, persist in Shh(-/-) mutants, and that these same markers were expanded in Gli3(-/-) mutants. To understand further the genetic interaction between Shh and Gli3, we examined Shh/Gli3 and Smoothened/Gli3 double homozygous mutants. Notably, in animals carrying either of these genetic backgrounds, genes such as Gsh2 and Dlx2, which are expressed pan-ventrally, as well as Nkx2.1, which demarcates the ventral most aspect of the telencephalon, appear to be largely restored to their wild-type patterns of expression. These results suggest that normal patterning in the telencephalon depends on the ventral repression of Gli3 function by Shh and, conversely, on the dorsal repression of Shh signaling by Gli3. In addition these results support the idea that, in addition to hedgehog signaling, a Shh-independent pathways must act during development to pattern the telencephalon.  相似文献   

11.
12.
Morphogenesis of the vertebrate facial skeleton depends upon inductive interactions between cephalic neural crest cells (CNCCs) and cephalic epithelia. The nasal capsule is a CNCC-derived cartilaginous structure comprising a ventral midline bar (mesethmoid) overlaid by a dorsal capsule (ectethmoid). Although Shh signalling from the anterior-most region of the endoderm (EZ-I) patterns the mesethmoid, the cues involved in ectethmoid induction are still undefined. Here, we show that ectethmoid formation depends upon Dlx5 and Dlx6 expression in a restricted ectodermal territory of the anterior neural folds, which we name NF-ZA. In both chick and mouse neurulas, Dlx5 and Dlx6 expression is mostly restricted to NF-ZA. Simultaneous Dlx5 and Dlx6 inactivation in the mouse precludes ectethmoid formation, while the mesethmoid is still present. Consistently, siRNA-mediated downregulation of Dlx5 and Dlx6 in the cephalic region of the early avian neurula specifically prevents ectethmoid formation, whereas other CNCC-derived structures, including the mesethmoid, are not affected. Similarly, NF-ZA surgical removal in chick neurulas averts ectethmoid development, whereas grafting a supernumerary NF-ZA results in an ectopic ectethmoid. Simultaneous ablation or grafting of both NF-ZA and EZ-I result, respectively, in the absence or duplication of both dorsal and ventral nasal capsule components. The present work shows that early ectodermal and endodermal signals instruct different contingents of CNCCs to form the ectethmoid and the mesethmoid, which then assemble to form a complete nasal capsule.  相似文献   

13.
BACKGROUND: Ethanol is a teratogen that affects numerous developmental processes in the nervous system, which includes development and survival of GABAergic and glutamatergic neurons. Possible molecular mechanisms accounting for ethanol's effects on nervous system development include perturbed fibroblast growth factor (Fgf) and Sonic hedgehog (Shh) signaling. In zebrafish, forebrain GABAergic neuron development is dependent on Fgf19 and Shh signaling. The present study was conducted to test the hypothesis that ethanol affects GABAergic and glutamatergic neuron development by disrupting Fgf, Shh, and agrin function. METHODS: Zebrafish embryos were exposed to varying concentrations of ethanol during a range of developmental stages, in the absence or presence of morpholino oligonucleotides (MOs) that disrupt agrin or Shh function. In situ hybridization was used to analyze glutamic acid decarboxylase (GAD1) gene expression, as well as markers of glutamatergic neurons. RESULTS: Acute ethanol exposure results in marked reduction in GAD1 gene expression in forebrain and hindbrain, and reduction of glutamatergic neuronal markers in hindbrain. Subthreshold ethanol exposure, combined with agrin or Shh MO treatment, produces a similar diminution in expression of markers for GABAergic and glutamatergic neurons. Consistent with the ethanol effects on Fgf and Shh pathways, Fgf19, Fgf8, or Shh mRNA overexpression rescues ethanol‐induced decreases in GAD1 and Atonal1a gene expression. CONCLUSIONS: These studies demonstrate that GABAergic and glutamatergic neuron development in zebrafish forebrain or cerebellum is sensitive to ethanol exposure, and provides additional evidence that a signaling pathway involving agrin, Fgfs and Shh may be a critical target of ethanol exposure during zebrafish embryogenesis. Birth Defects Research (Part A), 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

14.
15.
16.
Effective induction of midbrain-specific dopamine (mDA) neurons from stem cells is fundamental for realizing their potential in biomedical applications relevant to Parkinson's disease. During early development, the Otx2-positive neural tissues are patterned anterior-posteriorly to form the forebrain and midbrain under the influence of extracellular signaling such as FGF and Wnt. In the mesencephalon, sonic hedgehog (Shh) specifies a ventral progenitor fate in the floor plate region that later gives rise to mDA neurons. In this study, we systematically investigated the temporal actions of FGF signaling in mDA neuron fate specification of mouse and human pluripotent stem cells and mouse induced pluripotent stem cells. We show that a brief blockade of FGF signaling on exit of the lineage-primed epiblast pluripotent state initiates an early induction of Lmx1a and Foxa2 in nascent neural progenitors. In addition to inducing ventral midbrain characteristics, the FGF signaling blockade during neural induction also directs a midbrain fate in the anterior-posterior axis by suppressing caudalization as well as forebrain induction, leading to the maintenance of midbrain Otx2. Following a period of endogenous FGF signaling, subsequent enhancement of FGF signaling by Fgf8, in combination with Shh, promotes mDA neurogenesis and restricts alternative fates. Thus, a stepwise control of FGF signaling during distinct stages of stem cell neural fate conversion is crucial for reliable and highly efficient production of functional, authentic midbrain-specific dopaminergic neurons. Importantly, we provide evidence that this novel, small-molecule-based strategy applies to both mouse and human pluripotent stem cells.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号