首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To investigate the transport of primary metabolites in Anabaena cylindrica from vegetative cells into heterocysts, intact filaments were labeled with the heterocysts were separated from the vegetative cells after different time intervals, and the labeling patterns were determined. After a 20-s fixation time, a high percentage of labeling of alanine, glutamate and glutamine, and, to a lesser extent, glucose 6-phosphate was found in heterocysts as compared with whole filaments. The results can be explained if transport of alanine, glutamate, and sugars from vegetative cells into heterocysts is assumed. Alanine can serve as a precursor for reducing equivalents if it is oxidized to glutamine which flows back to the vegetative cells. This idea is supported by an experiment in which exogenous alanine is readily converted by isolated heterocysts to glutamate and glutamine under a N2-H2 atmosphere. The incorporation of [14C]carbonate in isolated heterocysts demonstrated the absence of the reductive pentose phosphate pathway; however, it revealed marked activity of an acid fixation reaction.  相似文献   

2.
Two Anabaena mutants having heterocysts but incapable of fixing molecular nitrogen in air have been isolated by using ultraviolet radiation or NTG mutagenesis. Their vegetative cells differentiated into heterocysts at a higher frequency than that of the wild type. The phenotype of the mutants is stable and a low frequence of spontaneous reversion was observed. Under microaerobic condition the mutants cells can express the genetic information which encodes nitrogenase synthesis and were capable of utilizing nitrogen for growth with a low acetylene reductiop activity. The level of nitrogenase activity was correlated reciprocally with the content of cell phycocyanin and the light intensity. Both synthesis and activity of the mutant nitrogenase were very sensitive than wild type to the oxygen in vive. Introduction of 1% O2 (v/v) into the gas phase inhibited evidently acetylene reduction. Exposure of the mutant suspension to 20% O2 (v/v) resulted in total and irreversible denaturation of nitrogenase. Withdrawing of O2 in gas phase, the nitrogenase was synthesized de nero; The synthesis process was repressed by chloramphenical or ammonia. The nitrogenase activity of mutant cells increased significantly either by nitrogen- starvating to decrease the phycocyanin content or by lowering the light intensity. Specifically, during the anaerobic induction by treating the mutants filaments with diehloromethylurea which prevents photosynthetic oxygen production, the specific activity of mutant nitrogcnase was equivalent nearly to that of wild type. The ability to reduce 2, 3, 5-triphenyltetrazolium was lower in heterocysts and vegetative cells of mutants than in that of wild type. The results suggest that the oxygen sensitivity of nitrogen fixation by heterocystous bluegreen algal mutants may be duc to the defect of some enzymic systems which might play a role in scavenging oxygen toxity, so that the process of nitrogen fixation is inhibited by the active oxygen produced by vegetative cells. The mechanism of protecting nitrogenase from oxygen damage in blue-green algae is discussed.  相似文献   

3.
4.
Heterocyst-free (NH4+-grown) cultures of the cyanobacterium Anabaena variabilis produce a hydrogenase which is reversibly inhibited by light and O2. White or red light at an intensity of 5,000 lx inhibited greater than 95% of the activity. Oxygen at concentrations as low as 0.5% inhibited more than 85% of the hydrogenase in the vegetative cells of CO2-NH4+-grown cultures. The vegatative cell hydrogenase is also sensitive to strong oxidants like ferricyanide. In the presence of strong reductants like S2O4(2-), hydrogenase activity was not inhibited by light. However, hydrogenase activity in the heterocysts was insensitive to both light (greater than 5,000 lx) and O2 (10%). Heterocysts and light-insensitive hydrogenase activity appear simultaneously during differentiation of the vegetative cells into heterocysts (an NH4+-grown culture transferred to NH4+-free, N2-containing medium). This light-insensitive hydrogenase activity was detected several hours before the induction of nitrogenase activity. These results suggest a mode of regulation of hydrogenase in the vegetative cells of A. variabilis that is similar to "redox control" of hydrogenase and other "anaerobic" proteins in enteric bacteria like Escherichia coli.  相似文献   

5.
6.
Fe emits low-energy X rays and Auger electrons by electron capture decay. Auger electrons are useful for autoradiographic examination of Fe incorporation among microbial communities. Attainable resolution, in terms of silver grain deposition, is excellent and comparable to H. Two known Fe-demanding processes, photosynthetic CO(2) fixation and N(2) fixation, were examined by autoradiography of Anabaena populations. During photosynthetically active (illuminated) N(2)-fixing periods, biological incorporation of FeCl(3) by vegetative cells and heterocysts was evident. When N(2) fixation was suppressed by NH(4) additions, heterocysts revealed no incorporation of Fe. Conversely, when N(2)-fixing Anabaena filaments were placed in darkness, Fe incorporation decreased in vegetative cells, whereas heterocysts showed sustained rates of Fe incorporation. Bacteria actively incorporated Fe under both light and dark conditions. The chelated (by Na(2)-ethylenediaminetetraacetate) form of FeCl(3) was more readily incorporated than the nonchelated form. Furthermore, abiotic adsorption of Fe to filters and nonliving particles proved lower when chelated Fe was used in experiments. Fe autoradiography is useful for observing the fate and cellular distribution of various forms of Fe among aquatic microbial communities.  相似文献   

7.
Summary Heterocysts reduce triphenyl tetrazolium chloride (TTC) faster than vegetative cells apparently because the absence of the O2-evolving photosystem II and the high electron transport activity in these cells. Although the rate of TTC reduction in vegetative cells is increased by the continuous removal of O2 evolved in photosynthesis, it has not been possible to obtain rates of TTC reduction comparable with those in heterocysts probably because of the continued competition for electrons between TTC and O2. The use of nitro-blue tetrazolium chloride (NBT) as a redox indicator has revealed the presence in filaments under aerobic conditions of a gradient of electron transport activity with strongest reducing power in the heterocysts, proheterocysts and vegetative cells next to heterocysts, and with gradually diminishing activity midway between two heterocysts. This pattern is indistinct in filaments grown under micro-aerophilic conditions. The strong electron transport activity in vegetative cells adjacent to heterocysts appears to promote reducing conditions in the heterocysts. Both, red-formazan formation in the heterocysts and blue-formazan deposition in vegetative cells greatly inhibit nitrogenase activity, and this was adversely affected also by the detachment of heterocysts from vegetative cells. The findings are consistent with the idea that the association of heterocysts with vegetative cells in essential for nitrogen fixation to occur in heterocystous blue-green algae.  相似文献   

8.
Nostoc punctiforme ATCC 29133 is a photoautotrophic cyanobacterium with the ability to fix atmospheric nitrogen and photoproduce hydrogen through the enzyme nitrogenase. The H(2) produced is reoxidized by an uptake hydrogenase. Inactivation of the uptake hydrogenase in N. punctiforme leads to increased H(2) release but unchanged rates of N(2) fixation, indicating redirected metabolism. System-wide understanding of the mechanisms of this metabolic redirection was obtained using complementary quantitative proteomic approaches, at both the filament and the heterocyst level. Of the total 1070 identified and quantified proteins, 239 were differentially expressed in the uptake hydrogenase mutant (NHM5) as compared to wild type. Our results indicate that the inactivation of uptake hydrogenase in N. punctiforme changes the overall metabolic equilibrium, affecting both oxygen reduction mechanisms in heterocysts as well as processes providing reducing equivalents for metabolic functions such as N(2) fixation. We identify specific metabolic processes used by NHM5 to maintain a high rate of N(2) fixation, and thereby potential targets for further improvement of nitrogenase based H(2) photogeneration. These targets include, but are not limited to, components of the oxygen scavenging capacity and cell envelope of heterocysts and proteins directly or indirectly involved in reduced carbon transport from vegetative cells to heterocysts.  相似文献   

9.
Two distinct types of hydrogenase occur in Anabaena 7120 and are distinguishable in whole filaments by the application of selective assay methods. A reversible hydrogenase occurs both in heterocysts and vegetative cells and can be selectively assayed by measuring H2 evolution from reduced methyl viologen. Activities in aerobically grown filaments were low but could be increased by 2 to 3 orders of magnitude by growing cells microaerobically. The presence of the reversible hydrogenase was independent of the N2-fixing properties of the organism, and activity did not respond to added H2 in the culture. Illumination was necessary during derepression of the reversible hydrogenase, and addition of 3-(3',4'-dichlorophenyl)-1,1-dimethylurea increased the amount of enzyme that was synthesized. An uptake hydrogenase occurred only in heterocysts of aerobically grown filaments, but a small amount of activity also was present in the vegetative cells of filaments grown microaerobically with 20% H2. It was assayed selectively by measuring an oxyhydrogen reaction at atmospheric levels of O2. Additional uptake hydrogenase could be elicited by including H2 or by removing O2 from the sparging gas of a culture.  相似文献   

10.
In the filamentous, heterocyst-forming cyanobacteria, two different cell types, the CO(2)-fixing vegetative cells and the N(2)-fixing heterocysts, exchange nutrients and regulators for diazotrophic growth. In the model organism Anabaena sp. strain PCC 7120, inactivation of fraH produces filament fragmentation under conditions of combined nitrogen deprivation, releasing numerous isolated heterocysts. Transmission electron microscopy of samples prepared by either high-pressure cryo-fixation or chemical fixation showed that the heterocysts of a ΔfraH mutant lack the intracellular membrane system structured close to the heterocyst poles, known as the honeycomb, that is characteristic of wild-type heterocysts. Using a green fluorescent protein translational fusion to the carboxyl terminus of FraH (FraH-C-GFP), confocal microscopy showed spots of fluorescence located at the periphery of the vegetative cells in filaments grown in the presence of nitrate. After incubation in the absence of combined nitrogen, localization of FraH-C-GFP changed substantially, and the GFP fluorescence was conspicuously located at the cell poles in the heterocysts. Fluorescence microscopy and deconvolution of images showed that GFP fluorescence originated mainly from the region next to the cyanophycin plug present at the heterocyst poles. Intercellular transfer of the fluorescent tracers calcein (622 Da) and 5-carboxyfluorescein (374 Da) was either not impaired or only partially impaired in the ΔfraH mutant, suggesting that FraH is not important for intercellular molecular exchange. Location of FraH close to the honeycomb membrane structure and lack of such structure in the ΔfraH mutant suggest a role of FraH in reorganization of intracellular membranes, which may involve generation of new membranes, during heterocyst differentiation.  相似文献   

11.
Continuous periplasm in a filamentous, heterocyst-forming cyanobacterium   总被引:1,自引:0,他引:1  
The cyanobacteria bear a Gram-negative type of cell wall that includes a peptidoglycan layer and an outer membrane outside of the cytoplasmic membrane. In filamentous cyanobacteria, the outer membrane appears to be continuous along the filament of cells. In the heterocyst-forming cyanobacteria, two cell types contribute specialized functions for growth: vegetative cells provide reduced carbon to heterocysts, which provide N2-derived fixed nitrogen to vegetative cells. The promoter of the patS gene, which is active specifically in developing proheterocysts and heterocysts of Anabaena sp. PCC 7120, was used to direct the expression of altered versions of the gfp gene. An engineered green fluorescent protein (GFP) that was exported to the periplasm of the proheterocysts through the twin-arginine translocation system was observed also in the periphery of neighbouring vegetative cells. However, if the GFP was anchored to the cytoplasmic membrane, it was observed in the periphery of the producing proheterocysts or heterocysts but not in adjacent vegetative cells. These results show that there is no cytoplasmic membrane continuity between heterocysts and vegetative cells and that the GFP protein can move along the filament in the periplasm, which is functionally continuous and so provides a conduit that can be used for chemical communication between cells.  相似文献   

12.
13.
The aquatic filamentous cyanobacteria Anabaena oscillarioides and Trichodesmium sp. reveal specific cellular regions of tetrazolium salt reduction. The effects of localized reduction of five tetrazolium salts on N(2) fixation (acetylene reduction), CO(2) fixation, and H(2) utilization were examined. During short-term (within 30 min) exposures in A. oscillarioides, salt reduction in heterocysts occurred simultaneously with inhibition of acetylene reduction. Conversely, when salts failed to either penetrate or be reduced in heterocysts, no inhibition of acetylene reduction occurred. When salts were rapidly reduced in vegetative cells, CO(2) fixation and H(2) utilization rates decreased, whereas salts exclusively reduced in heterocysts were not linked to blockage of these processes. In the nonheterocystous genus Trichodesmium, the deposition of reduced 2,3,5-triphenyl-2-tetrazolium chloride (TTC) in the internal cores of trichomes occurs simultaneously with a lowering of acetylene reduction rates. Since TTC deposition in heterocysts of A. oscillarioides occurs contemporaneously with inhibition of acetylene reduction, we conclude that the cellular reduction of this salt is of use in locating potential N(2)-fixing sites in cyanobacteria. The possible applications and problems associated with interpreting localized reduction of tetrazolium salts in cyanobacteria are presented.  相似文献   

14.
2-Methylhopanes, molecular fossils of 2-methylbacteriohopanepolyol (2-MeBHP) lipids, have been proposed as biomarkers for cyanobacteria, and by extension, oxygenic photosynthesis. However, the robustness of this interpretation is unclear, as 2-methylhopanoids occur in organisms besides cyanobacteria and their physiological functions are unknown. As a first step toward understanding the role of 2-MeBHP in cyanobacteria, we examined the expression and intercellular localization of hopanoids in the three cell types of Nostoc punctiforme : vegetative cells, akinetes, and heterocysts. Cultures in which N. punctiforme had differentiated into akinetes contained approximately 10-fold higher concentrations of 2-methylhopanoids than did cultures that contained only vegetative cells. In contrast, 2-methylhopanoids were only present at very low concentrations in heterocysts. Hopanoid production initially increased threefold in cells starved of nitrogen but returned to levels consistent with vegetative cells within 2 weeks. Vegetative and akinete cell types were separated into cytoplasmic, thylakoid, and outer membrane fractions; the increase in hopanoid expression observed in akinetes was due to a 34-fold enrichment of hopanoid content in their outer membrane relative to vegetative cells. Akinetes formed in response either to low light or phosphorus limitation, exhibited the same 2-methylhopanoid localization and concentration, demonstrating that 2-methylhopanoids are associated with the akinete cell type per se . Because akinetes are resting cells that are not photosynthetically active, 2-methylhopanoids cannot be functionally linked to oxygenic photosynthesis in N.   punctiforme .  相似文献   

15.
Summary Blending Anabaena cylindrica cultures results in a loss of nitrogenase activity which is correlated with the breakage of the filaments at the junctions between heterocysts and vegetative cells. Oxygen inhibition of nitrogen fixation was significant only above atmospheric concentrations. Nitrogen-fixation activities in the dark were up to 50% of those observed in the light and were dependent on oxygen (10 to 20% was optimal). Nitrogenase activity was lost in about 3 h when cells were incubated aerobically in the dark. Re-exposure to light resulted in recovery of nitrogenase activity within 2 h. Blending, oxygen, or dark pre-incubation had similar effects upon cultures grown under air or nitrogen and did not inhibit light-dependent CO2 fixation. We conclude that heterocysts are the sites of nitrogenase activity and propose a model for nitrogen fixation by Anabaena cylindrica.  相似文献   

16.
Filamentous cyanobacteria of the order Nostocales display typical properties of multicellular organisms. In response to nitrogen starvation, some vegetative cells differentiate into heterocysts, where fixation of N(2) takes place. Heterocysts provide a micro-oxic compartment to protect nitrogenase from the oxygen produced by the vegetative cells. Differentiation involves fundamental remodeling of the Gram-negative cell wall by deposition of a thick envelope and by formation of a neck-like structure at the contact site to the vegetative cells. Cell wall-hydrolyzing enzymes, like cell wall amidases, are involved in peptidoglycan maturation and turnover in unicellular bacteria. Recently, we showed that mutation of the amidase homologue amiC2 gene in Nostoc punctiforme ATCC 29133 distorts filament morphology and function. Here, we present the functional characterization of two amiC paralogues from Anabaena sp. strain PCC 7120. The amiC1 (alr0092) mutant was not able to differentiate heterocysts or to grow diazotrophically, whereas the amiC2 (alr0093) mutant did not show an altered phenotype under standard growth conditions. In agreement, fluorescence recovery after photobleaching (FRAP) studies showed a lack of cell-cell communication only in the AmiC1 mutant. Green fluorescent protein (GFP)-tagged AmiC1 was able to complement the mutant phenotype to wild-type properties. The protein localized in the septal regions of newly dividing cells and at the neck region of differentiating heterocysts. Upon nitrogen step-down, no mature heterocysts were developed in spite of ongoing heterocyst-specific gene expression. These results show the dependence of heterocyst development on amidase function and highlight a pivotal but so far underestimated cellular process, the remodeling of peptidoglycan, for the biology of filamentous cyanobacteria.  相似文献   

17.
Metabolically active heterocysts were isolated from a mutant of Anabaena sp. strain CA with fragile vegetative cells. Heterocysts isolated from cultures grown in 1% CO2 in air reduced C2H2 at 57 and 10 nmol of C2H2 per mg (dry weight) per min under H2 and Ar, respectively. However, if whole filaments were sparged with 1% CO2 in 99% Ar for 12 h before heterocyst isolation, these heterocysts showed C2H2 reduction rates of 83 nmol of C2H4 per mg (dry weight) per min under either H2 or Ar, or 40% the activity of whole filaments grown in 1% CO2 in air. Heterocysts isolated from cultures sparged with 100% Ar or 1% CO2 in 99% N2 had the same C2H2 reduction pattern as heterocysts from cultures grown in 1% CO2 in air, i.e., low activity under Ar and high activity under H2. Labeling of whole filaments incubated with NaH14CO3 for 12 h under 1% CO2 in air or 1% CO2 in 99% Ar resulted in a twofold higher accumulation of 14C-labeled compounds in vegetative cells and heterocysts of Ar-incubated cells. Our results suggest that during incubation under 1% CO2 in 99% Ar, presumably a nitrogen starvation condition, continuing photosynthetic fixation of CO2 leads to accumulation of material(s) in the heterocysts that supports a high, persistent endogenous rate of C2H2 reduction. This material appears to be, in part, glycogen.  相似文献   

18.
The isocitrate dehydrogenase from cyanobacteria   总被引:2,自引:0,他引:2  
The present communication describes the properties of isocitrate dehydrogenase in crude extracts from the unicellular Anacystis nidulans and from heterocysts and vegetative cells of Nostoc muscorum and Anabaena cylindrica. The activity levels of this enzyme are much higher in heterocysts than in vegetative cells of N. muscorum and A. cylindrica. Isocitrate dehydrogenase is virtually inactive in vegetative cells of A. cylindrica. The enzyme is negatively regulated by the reduction charge and scarcely affected by oxoglutarate in the three cyanobacteria. The inhibition by ATP and ADP is competitive with respect to isocitrate and NADP+ in A. cylindrica and N. muscorum and noncompetitive in A. nidulans. Isocitrate dehydrogenase from the three cyanobacteria seems to be a hysteretic enzyme. All the experimental data suggest that the major physiological role of isocitrate and the isocitrate dehydrogenase in heterocysts is not to generate reducing equivalents for N2-fixation. Oxoglutarate formed by the enzyme reaction is likely required for the biosynthesis of glutamate inside the heterocysts. Thioredoxin preparations from spinach chloroplasts or from A. cylindrica activate isocitrate dehydrogenase from either heterocysts or vegetative cells of A. cylindrica. Activation is completed within seconds and requires dithiothreitol besides thioredoxin. The thioredoxin preparation which activates isocitrate dehydrogenase also activates NADP+-dependent malate dehydrogenase from spinach chloroplasts or heterocysts of A. cylindrica. Isocitrate dehydrogenase from A. cylindrica is deactivated by oxidized glutathione. It is speculated that isocitrate dehydrogenase and thioredoxin play a role in the differentiation of vegetative cells to heterocysts.  相似文献   

19.
The thylakoids of vegetative cells of the filamentous cyanobacterium, Anabaena cylindrica, are capable of oxygen-evolving photosynthesis and contain both Photosystems I and II (PSI and PSII). The heterocysts, cells specialized for nitrogen fixation, do not produce oxygen and lack Photosystem II activity, the major accessory pigments, and perhaps the chlorophyll a associated with PSII. Freeze-fracture replicas of vegetative cells and of heterocysts reveal differences in the structure of the thylakoids. A histogram of particle sizes on the exoplasmic fracture face (E-face, EF) of vegetative cell thylakoids has two major peaks, at 75 and 100 A. The corresponding histogram for heterocyst thylakoids lacks the 100 A size class, but has a very large peak at about 55 A with a shoulder at 75 A. Histograms of protoplasmic fracture face (P-face, PF) particle diameters show single broad peaks, the mean diameter being 71 A for vegetative cells and 64 A for heterocysts. The thylakoids of both cell types have about 5600 particles/micrometers2 on the P-face. On the E-face, the density drops from 939 particles/micrometers2 on vegetative cell thylakoids to 715 particles/micrometers2 on heterocyst thylakoids. The data suggest that the 100 A E-face particle of vegetative cell thylakoids is a PSII complex. The 55 A EF particle of heterocysts may be part of the nitrogenase complex or a remnant of the PSII complex. The role of the 75 A EF particle is unknown. Other functions localized on cyanobacterial thylakoids, such as respiration and hydrogenase activity, must be considered when interpreting the structure of these complex thylakoids.  相似文献   

20.
Anabaena variabilis ATCC 29413 belongs to the cyanobacteria that use a specific cell type, heterocysts, for fixation of atmospheric nitrogen under aerobic conditions. Nitrogen fixation under anaerobic conditions is catalyzed by a Mo-dependent nitrogenase (Nif2) that is expressed in the vegetative cells. We demonstrate here using immunolocalization/light microscopy (LM) that the synthesis of NifH2 is mainly initiated in dividing vegetative cells along the trichomes. Blocking cell division by cephalexin abolished nitrogenase synthesis under anaerobic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号