首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The crystal structures of the Na(+)- and Li(+)-bound NtpK rings of Enterococcus hirae V-ATPase have been obtained. The coupling ion (Na(+) or Li(+)) was surrounded by five oxygen atoms contributed by residues T64, Q65, Q110, E139, and L61, and the hydrogen bonds of the side chains of Q110, Y68, and T64 stabilized the position of the E139 γ carboxylate essential for ion occlusion (PDB accession numbers 2BL2 and 2CYD). We previously indicated that an NtpK mutant strain (E139D) lost tolerance to sodium but not to lithium at alkaline pHs and suggested that the E139 residue is indispensable for the enzymatic activity of E. hirae V-ATPase linked with the sodium tolerance of this bacterium. In this study, we examined the activities of V-ATPase in which these four residues, except for E139, were substituted. The V-ATPase activities of the Q65A and Y68A mutants were slightly retained, but those of the T64A and Q110A mutants were negligible. Among the residues, T64 and Q110 are indispensable for the ion coupling of E. hirae V-ATPase, in addition to the essential residue E139.  相似文献   

2.
The salt overly sensitive (SOS) pathway is critical for plant salt stress tolerance and has a key role in regulating ion transport under salt stress. To further investigate salt tolerance factors regulated by the SOS pathway, we expressed an N-terminal fusion of the improved tandem affinity purification tag to SOS2 (NTAP-SOS2) in sos2-2 mutant plants. Expression of NTAP-SOS2 rescued the salt tolerance defect of sos2-2 plants, indicating that the fusion protein was functional in vivo. Tandem affinity purification of NTAP-SOS2-containing protein complexes and subsequent liquid chromatography-tandem mass spectrometry analysis indicated that subunits A, B, C, E, and G of the peripheral cytoplasmic domain of the vacuolar H+-ATPase (V-ATPase) were present in a SOS2-containing protein complex. Parallel purification of samples from control and salt-stressed NTAP-SOS2/sos2-2 plants demonstrated that each of these V-ATPase subunits was more abundant in NTAP-SOS2 complexes isolated from salt-stressed plants, suggesting that the interaction may be enhanced by salt stress. Yeast two-hybrid analysis showed that SOS2 interacted directly with V-ATPase regulatory subunits B1 and B2. The importance of the SOS2 interaction with the V-ATPase was shown at the cellular level by reduced H+ transport activity of tonoplast vesicles isolated from sos2-2 cells relative to vesicles from wild-type cells. In addition, seedlings of the det3 mutant, which has reduced V-ATPase activity, were found to be severely salt sensitive. Our results suggest that regulation of V-ATPase activity is an additional key function of SOS2 in coordinating changes in ion transport during salt stress and in promoting salt tolerance.  相似文献   

3.
Suaeda salsa L. is a halophytic species that is well adapted to high salinity. In order to understand its salt tolerance mechanism, we examined the growth and vacuolar H+-ATPase (V-ATPase) response to NaCl within the shoots and roots. The growth of shoots, but not roots, was dramatically stimulated by NaCl. Cl and Na+ were mainly accumulated in shoots. V-ATPase activity was significantly increased by NaCl in roots and especially in shoots. Interestingly, antisera ATP95 and ATP88b detected three V1 subunits (66, 55 and 36 KDa) of V-ATPase only in shoots, while an 18 kDa V0 subunit of V-ATPase was detected by both antisera in shoots and roots. It suggested that the tissue-specific characteristics of V-ATPase were related to the different patterns of growth and ion accumulation in shoots and roots of S. salsa.  相似文献   

4.
5.
6.
7.
The regulation of intracellular ion concentrations is a fundamental property of living cells. Although many ion transporters have been identified, the systems that modulate their activity remain largely unknown. We have characterized two partially redundant genes from Saccharomyces cerevisiae, HAL4/SAT4 and HAL5, that encode homologous protein kinases implicated in the regulation of cation uptake. Overexpression of these genes increases the tolerance of yeast cells to sodium and lithium, whereas gene disruptions result in greater cation sensitivity. These phenotypic effects of the mutations correlate with changes in cation uptake and are dependent on a functional Trk1-Trk2 potassium transport system. In addition, hal4 hal5 and trk1 trk2 mutants exhibit similar phenotypes: (i) they are deficient in potassium uptake; (ii) their growth is sensitive to a variety of toxic cations, including lithium, sodium, calcium, tetramethylammonium, hygromycin B, and low pH; and (iii) they exhibit increased uptake of methylammonium, an indicator of membrane potential. These results suggest that the Hal4 and Hal5 protein kinases activate the Trk1-Trk2 potassium transporter, increasing the influx of potassium and decreasing the membrane potential. The resulting loss in electrical driving force reduces the uptake of toxic cations and improves salt tolerance. Our data support a role for regulation of membrane potential in adaptation to salt stress that is mediated by the Hal4 and Hal5 kinases.  相似文献   

8.
The vacuolar H(+)-ATPase (V-ATPase) along with ion channels and transporters maintains vacuolar pH. V-ATPase ATP hydrolysis is coupled with proton transport and establishes an electrochemical gradient between the cytosol and vacuolar lumen for coupled transport of metabolites. Btn1p, the yeast homolog to human CLN3 that is defective in Batten disease, localizes to the vacuole. We previously reported that Btn1p is required for vacuolar pH maintenance and ATP-dependent vacuolar arginine transport. We report that extracellular pH alters both V-ATPase activity and proton transport into the vacuole of wild-type Saccharomyces cerevisiae. V-ATPase activity is modulated through the assembly and disassembly of the V(0) and V(1) V-ATPase subunits located in the vacuolar membrane and on the cytosolic side of the vacuolar membrane, respectively. V-ATPase assembly is increased in yeast cells grown in high extracellular pH. In addition, at elevated extracellular pH, S. cerevisiae lacking BTN1 (btn1-Delta), have decreased V-ATPase activity while proton transport into the vacuole remains similar to that for wild type. Thus, coupling of V-ATPase activity and proton transport in btn1-Delta is altered. We show that down-regulation of V-ATPase activity compensates the vacuolar pH imbalance for btn1-Delta at early growth phases. We therefore propose that Btn1p is required for tight regulation of vacuolar pH to maintain the vacuolar luminal content and optimal activity of this organelle and that disruption in Btn1p function leads to a modulation of V-ATPase activity to maintain cellular pH homeostasis and vacuolar luminal content.  相似文献   

9.
10.
In this study, high-betacyanin Suaeda salsa seedlings were developed and used to explore whether the betacyanin accumulation is related to salinity tolerance in S. salsa. After 8 days of culture, betacyanin content decreased markedly in both high-betacyanin S. salsa seedlings and the control under nonsalt stress, but the decreases were suppressed by NaCl treatments. Betacyanin content in high-betacyanin seedlings was much higher than that in the control throughout the salt treatments. Growth of S. salsa plants was significantly promoted by NaCl treatments, and the fresh weight of high-betacyanin seedlings was much higher than that of the control when grown in 400 mmol L−1 NaCl. Similar cell sap osmolarity and K+/Na+ ratios were observed in high-betacyanin seedlings and the control. No obvious differences in V-ATPase (tonoplast H+-ATPase) activity, leaf SOD (superoxide dismutase) activity, and total chloroplast SOD (including thylakoid-bound SOD and stroma SOD) activity were detected between high-betacyanin seedlings and the control under nonsalt stress conditions. However, V-ATPase hydrolytic activity increased dramatically in S. salsa seedlings when subjected to different levels of NaCl, and the increases in V-ATPase activity in high-betacyanin seedlings were much higher than that in the control. No clear pattern was observed for NaCl-dependent activity changes of P-ATPase (plasma membrane H+-ATPase) and V-PPase (tonoplast H+-pyrophosphatase). Similar changes were demonstrated in leaf SOD activity and chloroplast SOD activity under salt stress. Both leaf SOD activity and chloroplast SOD activity were markedly enhanced with the increase of NaCl or with time, especially thylakoid-bound SOD activity. Furthermore, the increases in chloroplast SOD activity and thylakoid-bound SOD activity were much higher in high-betacyanin seedlings than that in the control at different levels of NaCl treatment. The higher V-ATPase activity, chloroplastic SOD activity, and thylakoid-bound SOD activity demonstrated in high-betacyanin seedlings, but lower in the control, suggest that high-betacyanin S. salsa seedlings may have higher potential to be energized by the electrochemical gradient for ion uptake into the vacuole and to scavenge O2−• in situ produced in the chloroplasts, which may lead to higher salt tolerance than the control under salt stress. Thus, betacyanin may be involved in salt tolerance of S. salsa.  相似文献   

11.
Lithium transport across the urinary bladder of Bufo marinus has been studied by means of the short-circuit current technique, as well as unidirectional ion flux measurements. Exposure to lithium of the epithelial (mucosal) surface of this preparation led to a slow, progressive decrease of ion transport, with increasing discrepancy between short-circuit current and lithium influx; in fact there was still an appreciable lithium influx across bladder exposed to amiloride even though short-circuit current was suppressed. Ohmic conductance and sodium efflux barely increased under these circumstances. Upon replacement of lithium by sodium on the epithelial side, the preparations recovered slowly indeed, and residual lithium could be detected in bladder tissue for more than 2 hr while the rate of sodium extrusion at the basal-lateral cell border was slowed down. Recovery from exposure to lithium was accelerated by vasopressin and amphotericin, both of which facilitate sodium entry at the apical border of the epithelium. Thus the lasting deleterious influence of lithium on sodium transport might result from the fact that this ion, once trapped in the cytoplasm, closes the sodium channels.  相似文献   

12.
2D nanomaterials provide numerous fascinating properties, such as abundant active surfaces and open ion diffusion channels, which enable fast transport and storage of lithium ions and beyond. However, decreased active surfaces, prolonged ion transport pathway, and sluggish ion transport kinetics caused by self‐restacking of 2D nanomaterials during electrode assembly remain a major challenge to build high‐performance energy storage devices with simultaneously maximized energy and power density as well as long cycle life. To address the above challenge, porosity (or hole) engineering in 2D nanomaterials has become a promising strategy to enable porous 2D nanomaterials with synergetic features combining both 2D nanomaterials and porous architectures. Herein, recent important progress on porous/holey 2D nanomaterials for electrochemical energy storage is reviewed, starting with the introduction of synthetic strategies of porous/holey 2D nanomaterials, followed by critical discussion of design rule and their advantageous features. Thereafter, representative work on porous/holey 2D nanomaterials for electrochemical capacitors, lithium‐ion and sodium‐ion batteries, and other emerging battery technologies (lithium‐sulfur and metal‐air batteries) are presented. The article concludes with perspectives on the future directions for porous/holey 2D nanomaterial in energy storage and conversion applications.  相似文献   

13.
The vacuolar proton-translocating ATPase (V-ATPase) plays a major role in organelle acidification and works together with other ion transporters to maintain pH homeostasis in eukaryotic cells. We analyzed a requirement for V-ATPase activity in protein trafficking in the yeast secretory pathway. Deficiency of V-ATPase activity caused by subunit deletion or glucose deprivation results in missorting of newly synthesized plasma membrane proteins Pma1 and Can1 directly from the Golgi to the vacuole. Vacuolar mislocalization of Pma1 is dependent on Gga adaptors although no Pma1 ubiquitination was detected. Proper cell surface targeting of Pma1 was rescued in V-ATPase-deficient cells by increasing the pH of the medium, suggesting that missorting is the result of aberrant cytosolic pH. In addition to mislocalization of the plasma membrane proteins, Golgi membrane proteins Kex2 and Vrg4 are also missorted to the vacuole upon loss of V-ATPase activity. Because the missorted cargos have distinct trafficking routes, we suggest a pH dependence for multiple cargo sorting events at the Golgi.  相似文献   

14.
Zhou S  Zhang Z  Tang Q  Lan H  Li Y  Luo P 《Biotechnology letters》2011,33(2):375-380
AtNHX1, a vacuolar Na+/H+ antiporter gene from Arabidopsis thaliana, was introduced into tobacco genome via Agrobacterium tumefaciens-mediated transformation to evaluate the role of vacuolar energy providers in plants salt stress response. Compared to the wild-type plants, over-expression of AtNHX1 increased salt tolerance in the transgenic tobacco plants, allowing higher germination rates of seeds and successful seedling establishment in the presence of toxic concentrations of NaCl. More importantly, the induced Na+/H+ exchange activity in the transgenic plants was closely correlated to the enhanced activity of vacuolar H+-ATPase (V-ATPase) when exposed to 200 mM NaCl. In addition, inhibition of V-ATPase activity led to the malfunction of Na+/H+ exchange activity, placing V-ATPase as the dominant energy provider for the vacuolar Na+/H+ antiporter AtNHX1. V-ATPase and vacuolar Na+/H+ antiporter thus function in an additive or synergistic way. Simultaneous overexpression of V-ATPase and vacuolar Na+/H+ antiporter might be appropriate for producing plants with a higher salt tolerance ability.  相似文献   

15.
The sodium efflux from the frog sartorius muscle into the media of different ion composition, prepared with ordinary and heavy water, was measured by radiotracer and flame-emission techniques. About the half of the sodium in muscles was substituted for lithium. The ouabain-sensitive, as well as external potassium- and external sodium-dependent components of the efflux were found to be totally inhibited in D2O, whereas the residual efflux observed in sodium- and potassium-free magnesium medium was diminished in D2O only by one half. A conclusion is made that the decrease in sodium efflux in D2O is due to the inhibition of sodium transfer through the Na, K-ATPase transport system.  相似文献   

16.
The use of flow injection analysis to automated extraction methods for the determination of lithium ion utilizing crown ethers or cryptands is demonstrated. The ion-pair extraction of cryptand 211, lithium, and resazurin exhibits a linear range for lithium ion of 70 ppb to 2.1 ppm. This method could tolerate up to 1000 ppm sodium ion. The chromogenic crown ether, 1-(2-hydroxy-5-nitrobenzyl)-1-aza-4,7,10-trioxacyclododecane, exhibits a linear range for lithium ion of 0.3 to 2 ppm. A sodium ion concentration of 230 ppm can be tolerated. Both extraction systems were used in the automated determination of lithium in blood serum and urine. Both methods agreed well with the known and/or atomic absorption values.  相似文献   

17.
The vacuolar H+-ATPase (V-ATPase) is a major contributor to luminal acidification in epithelia of Wolffian duct origin. In both kidney-intercalated cells and epididymal clear cells, cAMP induces V-ATPase apical membrane accumulation, which is linked to proton secretion. We have shown previously that the A subunit in the cytoplasmic V1 sector of the V-ATPase is phosphorylated by protein kinase A (PKA). Here we have identified by mass spectrometry and mutagenesis that Ser-175 is the major PKA phosphorylation site in the A subunit. Overexpression in HEK-293T cells of either a wild-type (WT) or phosphomimic Ser-175 to Asp (S175D) A subunit mutant caused increased acidification of HCO3-containing culture medium compared with cells expressing vector alone or a PKA phosphorylation-deficient Ser-175 to Ala (S175A) mutant. Moreover, localization of the S175A A subunit mutant expressed in HEK-293T cells was more diffusely cytosolic than that of WT or S175D A subunit. Acute V-ATPase-mediated, bafilomycin-sensitive H+ secretion was up-regulated by a specific PKA activator in HEK-293T cells expressing WT A subunit in HCO3-free buffer. In cells expressing the S175D mutant, V-ATPase activity at the membrane was constitutively up-regulated and unresponsive to PKA activators, whereas cells expressing the S175A mutant had decreased V-ATPase activity that was unresponsive to PKA activation. Finally, Ser-175 was necessary for PKA-stimulated apical accumulation of the V-ATPase in a polarized rabbit cell line of collecting duct A-type intercalated cell characteristics (Clone C). In summary, these results indicate a novel mechanism for the regulation of V-ATPase localization and activity in kidney cells via direct PKA-dependent phosphorylation of the A subunit at Ser-175.  相似文献   

18.
Potassium ion protects the branched-chain alpha-ketoacid dehydrogenase complex against inactivation by thermal denaturation and protease digestion. Rubidium was effective but sodium and lithium were not, suggesting that the ionic size of the cation is important for stabilization of the enzyme. Thiamine pyrophosphate stabilization of the complex [Danner, D. J., Lemmon, S. K., and Elsas, S. J. (1980) Arch. Biochem. Biophys. 202, 23-28] was found dependent on the presence of potassium ion. Studies with resolved components indicate that the thiamine pyrophosphate-dependent enzyme of the complex, i.e., the 2-oxoisovalerate dehydrogenase (lipoamide) (EC 1.2.4.4), is the component stabilized by potassium ion. Branched-chain alpha-ketoacid dehydrogenase-kinase activity measured by inactivation of the branched-chain alpha-ketoacid dehydrogenase complex was maximized at a potassium ion concentration of 100 mM. Stimulation of kinase activity was also found with rubidium ion but not with lithium and sodium ions. All salts tested increased the efficiency of inactivation by phosphorylation, i.e., decreased the degree of enzyme phosphorylation required to cause inactivation of the complex. The effectiveness and efficacy of alpha-chloroisocaproate as an inhibitor of branched-chain alpha-ketoacid dehydrogenase kinase were enhanced by the presence of monovalent cations, and further increased by inorganic phosphate. These findings suggest that monovalent cations and anions, particularly potassium and phosphate, cause structural changes in the dehydrogenase-kinase complex that alter its susceptibility to phosphorylation and responsiveness to kinase inhibitors.  相似文献   

19.
Plant responses to developmental and environmental cues are often mediated by calcium (Ca2+) signals that are transmitted by diverse calcium sensors. The calcineurin B-like (CBL) protein family represents calcium sensors that decode calcium signals through specific interactions with a group of CBL-interacting protein kinases. We report functional analysis of Arabidopsis CBL2 and CBL3, two closely related CBL members that are localized to the vacuolar membrane through the N-terminal tonoplast-targeting sequence. While cbl2 or cbl3 single mutant did not show any phenotypic difference from the wild type, the cbl2 cbl3 double mutant was stunted with leaf tip necrosis, underdeveloped roots, shorter siliques and fewer seeds. These defects were reminiscent of those in the vha-a2 vha-a3 double mutant deficient in vacuolar H+-ATPase (V-ATPase). Indeed, the V-ATPase activity was reduced in the cbl2 cbl3 double mutant, connecting tonoplast CBL-type calcium sensors to the regulation of V-ATPase. Furthermore, cbl2 cbl3 double mutant was compromised in ionic tolerance and micronutrient accumulation, consistent with the defect in V-ATPase activity that has been shown to function in ion compartmentalization. Our results suggest that calcium sensors CBL2 and CBL3 serve as molecular links between calcium signaling and V-ATPase, a central regulator of intracellular ion homeostasis.  相似文献   

20.
Suaeda salsa L. is a halophytic species that is well adapted to high salinity. In order to understand its salt tolerance mechanism, we examined the growth and vacuolar H+-ATPase (V-ATPase) response to NaCl within the shoots and roots. The growth of shoots, but not roots, was dramatically stimulated by NaCl. Cl? and Na+ were mainly accumulated in shoots. V-ATPase activity was significantly increased by NaCl in roots and especially in shoots. Interestingly, antisera ATP95 and ATP88b detected three V1 subunits...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号