首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
LFchimera, a construct combining two antimicrobial domains of bovine lactoferrin, lactoferrampin265–284 and lactoferricin17–30, possesses strong bactericidal activity. As yet, no experimental evidence was presented to evaluate the mechanisms of LFchimera against Burkholderia isolates. In this study we analyzed the killing activity of LFchimera on the category B pathogen Burkholderia pseudomallei in comparison to the lesser virulent Burkholderia thailandensis often used as a model for the highly virulent B. pseudomallei. Killing kinetics showed that B. thailandensis E264 was more susceptible for LFchimera than B. pseudomallei 1026b. Interestingly the bactericidal activity of LFchimera appeared highly pH dependent; B. thailandensis killing was completely abolished at and below pH 6.4. FITC-labeled LFchimera caused a rapid accumulation within 15 min in the cytoplasm of both bacterial species. Moreover, freeze-fracture electron microscopy demonstrated extreme effects on the membrane morphology of both bacterial species within 1 h of incubation, accompanied by altered membrane permeability monitored as leakage of nucleotides. These data indicate that the mechanism of action of LFchimera is similar for both species and encompasses disruption of the plasma membrane and subsequently leakage of intracellular nucleotides leading to cell dead.  相似文献   

2.
Phage λ-Red proteins are powerful tools for pulling and knocking out chromosomal fragments but have been limited to the γ-proteobacteria. Procedures are described here to easily knock out (KO) and pull out (PO) chromosomal DNA fragments from naturally transformable Burkholderia thailandensis and Burkholderia pseudomallei. This system takes advantage of published compliant counterselectable and selectable markers (sacB, pheS, gat and the arabinose-utilization operon) and λ-Red mutant proteins. pheS-gat (KO) or oriT-ColE1ori-gat-ori1600-rep (PO) PCR fragments are generated with flanking 40- to 45-bp homologies to targeted regions incorporated on PCR primers. One-step recombination is achieved by incubation of the PCR product with cells expressing λ-Red proteins and subsequent selection on glyphosate-containing medium. This procedure takes ~10 d and is advantageous over previously published protocols: (i) smaller PCR products reduce primer numbers and amplification steps, (ii) PO fragments suitable for downstream manipulation in Escherichia coli are obtained and (iii) chromosomal KO increases flexibility for downstream processing.  相似文献   

3.
Burkholderia pseudomallei, a Gram-negative bacterium that causes melioidosis may be differentiated from closely related species of Burkholderia mallei that causes glanders and non-pathogenic species of Burkholderia thailandensis by multiplex PCR. The multiplex PCR consists of primers that flank a 10-bp repetitive element in B. pseudomallei and B. mallei amplifying PCR fragment of varying sizes between 400-700 bp, a unique sequence in B. thailandensis amplifying a PCR fragment of 308 bp and the metalloprotease gene amplifying a PCR fragment of 245 bp in B. pseudomallei and B. thailandensis. The multiplex PCR not only can differentiate the three Burkholderia species but can also be used for epidemiological typing of B. pseudomallei and B. mallei strains.  相似文献   

4.
5.
Burkholderia pseudomallei is the causative agent of melioidosis, an overwhelming, rapidly fatal septic infection, and B. thailandensis is a closely related, less virulent species. Both organisms are naturally competent for DNA transformation, and this report describes a procedure exploiting this property for the rapid generation of marked deletion mutations by using PCR products. The method was employed to create 61 mutant strains. Several selectable elements were employed, including elements carrying loxP and FRT recombinase recognition sites to facilitate resistance marker excision. Chromosomal mutations could also be transferred readily between strains by transformation. The availability of simple procedures for creating defined chromosomal mutations and moving them between strains should facilitate genetic analysis of virulence and other traits of these two Burkholderia species.  相似文献   

6.
We have developed a multiplex PCR assay for rapid identification and differentiation of cultures for Burkholderia pseudomallei, Burkholderia thailandensis, Burkholderia mallei and Burkholderia cepacia complex. The assay is valuable for use in clinical and veterinary laboratories, and in a deployable laboratory during outbreaks.  相似文献   

7.
Burkholderia pseudomallei and Burkholderia thailandensis express similar O-antigens (O-PS II) in which their 6-deoxy-alpha-L-talopyranosyl (L-6dTalp) residues are variably substituted with O-acetyl groups at the O-2 or O-4 positions. In previous studies we demonstrated that the protective monoclonal antibody, Pp-PS-W, reacted with O-PS II expressed by wild-type B. pseudomallei strains but not by a B. pseudomallei wbiA null mutant. In the present study we demonstrate that WbiA activity is required for the acetylation of the L-6dTalp residues at the O-2 position and that structural modification of O-PS II molecules at this site is critical for recognition by Pp-PS-W.  相似文献   

8.
Recently we identified a bacterial factor (BimA) required for actin-based motility of Burkholderia pseudomallei. Here we report that Burkholderia mallei and Burkholderia thailandensis are capable of actin-based motility in J774.2 cells and that BimA homologs of these bacteria can restore the actin-based motility defect of a B. pseudomallei bimA mutant. While the BimA homologs differ in their amino-terminal sequence, they interact directly with actin in vitro and vary in their ability to bind Arp3.  相似文献   

9.
10.
11.
Flagellins from Clostridium botulinum were shown to be post-translationally modified with novel glycan moieties by top-down MS analysis of purified flagellin protein from strains of various toxin serotypes. Detailed analyses of flagellin from two strains of C. botulinum demonstrated that the protein is modified by a novel glycan moiety of mass 417 Da in O-linkage. Bioinformatic analysis of available C. botulinum genomes identified a flagellar glycosylation island containing homologs of genes recently identified in Campylobacter coli that have been shown to be responsible for the biosynthesis of legionaminic acid derivatives. Structural characterization of the carbohydrate moiety was completed utilizing both MS and NMR spectroscopy, and it was shown to be a novel legionaminic acid derivative, 7-acetamido-5-(N-methyl-glutam-4-yl)-amino-3,5,7,9-tetradeoxy-D-glycero-alpha-D-galacto-nonulosonic acid, (alphaLeg5GluNMe7Ac). Electron transfer dissociation MS with and without collision-activated dissociation was utilized to map seven sites of O-linked glycosylation, eliminating the need for chemical derivatization of tryptic peptides prior to analysis. Marker ions for novel glycans, as well as a unique C-terminal flagellin peptide marker ion, were identified in a top-down analysis of the intact protein. These ions have the potential for use in for rapid detection and discrimination of C. botulinum cells, indicating botulinum neurotoxin contamination. This is the first report of glycosylation of Gram-positive flagellar proteins by the 'sialic acid-like' nonulosonate sugar, legionaminic acid.  相似文献   

12.
The biopolymer composition, immunotropic and immunogenic properties of the fractions of B. pseudomallei and B. mallei were under study. The first two capsular fractions of these agents were found to be similar in their biopolymer composition that was indicative of their close relations. At the same time the causative agents of glanders proved to have decreased content of high molecular glycoproteids and LPS fragments. In the causative agents of melioidosis, capsular fractions K3 and K4 were characterized by the domination of proteins with a molecular weight of 42-25 kD. Fraction K4 in B. pseudomallei and fraction K1 in B. mallei had pronounced immunosuppressing properties ensuring the protection of encapsulated microbial cells in the body. The biopolymers forming fractions K1, K2, K3 in B. pseudomallei and fraction K2 in B. mallei were characterized by immunomodulating properties.  相似文献   

13.
Bacterial protein glycosylation systems from varying species have been functionally reconstituted in Escherichia coli. Both N- and O-linked glycosylation pathways, in which the glycans are first assembled onto lipid carriers and subsequently transferred to acceptor proteins by an oligosaccharyltransferase (OTase), have been documented in bacteria. The identification and characterization of novel OTases with different properties may provide new tools for engineering glycoproteins of biotechnological interest. In the case of OTases involved in O-glycosylation (O-OTases), there is very low sequence homology between those from different bacterial species. The Wzy_C signature domain common to these enzymes is also present in WaaL ligases; enzymes involved in lipopolysaccharide biosynthesis. Therefore, the identification of O-OTases using solely bioinformatic methods is problematic. The hypothetical proteins BTH_I0650 from Burkholderia thailandensis E264 and VC0393 from Vibrio cholerae N16961 contain the Wzy_C domain. In this work, we demonstrate that both proteins have O-OTase activity and renamed them PglL(Bt) and PglL(Vc), respectively, similar to the Neisseria meningitidis counterpart (PglL(Nm)). In E. coli, PglL(Bt) and PglL(Vc) display relaxed glycan and protein specificity. However, effective glycosylation depends upon a specific combination of the protein acceptor, glycan and O-OTase analyzed. This knowledge has important implications in the design of glycoconjugates and provides novel tools for use in glycoengineering applications. The codification of enzymatically active O-OTase in the genomes of members of the Vibrio and Burkholderia genera suggests the presence of still unknown O-glycoproteins in these organisms, which might have a role in bacterial physiology or pathogenesis.  相似文献   

14.
Burkholderia pseudomallei-like microorganisms have been isolated from soil and water in regions with endemic melioidosis. These strains have biochemical and antigenic profiles identical to melioidosis agents, except that they differ by virulence and L-arabinose (vir-, ara+). There are minor differences between these species by rRNA sequence. DNA hybridization and, more so, positive transformation of DNA auxotrophic mutants of B. pseudomallei by cell lysates of B. thailandensis and B. mallei confirmed the homology of these species' genomes. These members of the Burkholderia genus (pseudomallei, mallei, and thailandensis) can be regarded as a supraspecies taxon: pseudomallei group. B. thailandensis strains are not virulent for guinea pigs and slightly virulent for golden hamsters. Immunization with live cultures of B. thailandensis protected more than 50% guinea pigs challenged with 200 LD50 B. pseudomallei 100. B. thailandensis is suggested as a potential melioidosis vaccine.  相似文献   

15.
Much effort has been devoted to the development of mouse monoclonal antibodies that react specifically with Burkholderia mallei and Burkholderia pseudomallei for diagnostic and/or therapeutic purposes. Our present study focused on the screening of a phage-displayed nonimmune human single-chain Fv (scFv) antibody library against heat-killed B. mallei and B. pseudomallei for the generation of human scFv antibodies specific to the two pathogenic species of bacteria. Using two different panning procedures, we obtained seven different scFv phage antibodies that interacted with the heat-killed whole bacterial cells of B. mallei and B. pseudomallei. Our results demonstrate that panning of a human scFv antibody library against heat-killed whole bacterial cells may provide a valuable strategy for developing human monoclonal antibodies against the highly pathogenic bacteria.  相似文献   

16.
Burkholderia thailandensis is a nonpathogenic gram-negative bacillus that is closely related to Burkholderia mallei and Burkholderia pseudomallei. We found that B. thailandensis E125 spontaneously produced a bacteriophage, termed phiE125, which formed turbid plaques in top agar containing B. mallei ATCC 23344. We examined the host range of phiE125 and found that it formed plaques on B. mallei but not on any other bacterial species tested, including B. thailandensis and B. pseudomallei. Examination of the bacteriophage by transmission electron microscopy revealed an isometric head and a long noncontractile tail. B. mallei NCTC 120 and B. mallei DB110795 were resistant to infection with phiE125 and did not produce lipopolysaccharide (LPS) O antigen due to IS407A insertions in wbiE and wbiG, respectively. wbiE was provided in trans on a broad-host-range plasmid to B. mallei NCTC 120, and it restored LPS O-antigen production and susceptibility to phiE125. The 53,373-bp phiE125 genome contained 70 genes, an IS3 family insertion sequence (ISBt3), and an attachment site (attP) encompassing the 3' end of a proline tRNA (UGG) gene. While the overall genetic organization of the phiE125 genome was similar to lambda-like bacteriophages and prophages, it also possessed a novel cluster of putative replication and lysogeny genes. The phiE125 genome encoded an adenine and a cytosine methyltransferase, and purified bacteriophage DNA contained both N6-methyladenine and N4-methylcytosine. The results presented here demonstrate that phiE125 is a new member of the lambda supergroup of Siphoviridae that may be useful as a diagnostic tool for B. mallei.  相似文献   

17.
18.
类鼻疽伯克霍尔德菌是一种胞内感染的革兰阴性杆菌,所导致的疾病称为类鼻疽。迄今为止,还没有针对类鼻疽的疫苗。其致死因子1(BLF1)作为类鼻疽伯克霍尔德菌的重要致病因子,能抑制宿主细胞翻译起始因子e IF4A的解旋酶活性,从而抑制蛋白质合成。BLF1作为e IF4A的抑制剂,有望成为靶向抗肿瘤药物。同时,BLF1具有很强的免疫原性,对其进行结构改造后,可成为类鼻疽疫苗的候选抗原。  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号