首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Devrieseasis caused by Devriesea agamarum is a highly prevalent disease in captive desert lizards, resulting in severe dermatitis and in some cases mass mortality. In this study, we assessed the contribution of autovaccination to devrieseasis control by evaluating the capacity of 5 different formalin-inactivated D. agamarum vaccines to induce a humoral immune response in bearded dragons (Pogona vitticeps). Each vaccine contained one of the following adjuvants: CpG, incomplete Freund''s, Ribi, aluminium hydroxide, or curdlan. Lizards were administrated one of the vaccines through subcutaneous injection and booster vaccination was given 3 weeks after primo-vaccination. An indirect ELISA was developed and used to monitor lizard serological responses. Localized adverse effects following subcutaneous immunization were observed in all but the Ribi adjuvanted vaccine group. Following homologous experimental challenge, the incomplete Freund''s as well as the Ribi vaccine were observed to confer protection in bearded dragons against the development of D. agamarum associated septicemia but not against dermatitis. Subsequently, two-dimensional gelelectrophoresis followed by immunoblotting and mass spectrometry was conducted with serum obtained from 3 lizards that showed seroconversion after immunisation with the Ribi vaccine. Fructose-bisphosphate aldolase and aldo-keto reductase of D. agamarum reacted with serum from the latter lizards. Based on the demonstrated seroconversion and partial protection against D. agamarum associated disease following the use of formalin-inactivated vaccines as well as the identification of target antigens in Ribi vaccinated bearded dragons, this study provides promising information towards the development of a vaccination strategy to control devrieseasis in captive lizard collections.  相似文献   

2.
The presence of biological soil crusts can affect the germination and survival of vascular plants, but the reasons are not well investigated. We have conducted a field investigation and greenhouse experiments to test the effect of crusts on two desert annual plants, which occur on the stabilized dunes of the Tengger Desert in N China. The results showed that biological soil crusts negatively influenced the seed bank of Eragrostis poaeoides and Bassia dasyphylla. The important effect of biological soil crusts on seed germination and establishment were performed indirectly through reducing the amount of germinating seeds. Field investigation and experimental results with regard to the seed bank indicated that higher seedling density was found in disturbed crust soil and bare soil surface than in intact crust soils. Greenhouse experiments showed that the effects of biological soil crusts on germination and establishment of the two plants are not obvious in moist condition, while disturbed crusts are more favorable to seed germination in dry treatment. Significant differences in biomass were found between disturbed crust soil and bare soil. Survival and growth of the two annual plants were enhanced in both algal and moss crusts during the season of rainfall or in moist environment, but crusts did not affect seedling survival in the dry period. The small seeded E. poaeoides has higher germination than larger-seeded B. dasyphylla in crust soils, but B. dasyphylla has a relatively higher survival rate than E. poaeoides in crust soils.  相似文献   

3.
doi: 10.1111/j.1741‐2358.2011.00520.x The effect of long‐term disinfection procedures on hardness property of resin denture teeth Objective: The aim of the study was to evaluate the effect of long‐term disinfection procedures on the Vickers hardness (VHN) of acrylic resin denture teeth. Material and methods: Five acrylic resin denture teeth (Vipi Dent Plus‐V, Trilux–T, Biolux‐B, Postaris‐P and Artiplus‐A) and one composite resin denture teeth (SR‐Orthosit‐O) were embedded in heat‐polymerised acrylic resin within polyvinylchloride tubes. Specimens were stored in distilled water at 37°C for 48 h. Measurements of hardness were taken after the following disinfection procedures: immersion for 7 days in 4% chlorhexidine gluconate or in 1% sodium hypochlorite (CIm and HIm group, respectively) and seven daily cycles of microwave sterilisation at 650 W for 6 min (MwS group). In the WIm group, specimens were maintained in water during the time used to perform the disinfection procedures (7 days). Data were analysed with anova followed by the Bonferroni procedure (α = 0.01). Results: Microwave disinfection decreased the hardness of all acrylic resin denture teeth (p < 0.001). Immersion for 7 days in 4% chlorhexidine gluconate or distilled water had significant effect on the hardness of the acrylic resin denture teeth A (p < 0.01), and 1% sodium hypochlorite on teeth T (p < 0.01). All disinfection procedures decrease the hardness of the composite resin denture teeth (p < 0.01). Teeth O exhibited the highest and teeth V the lowest hardness values in the control group (p < 0.01). Conclusions: Disinfection procedures changed the hardness of resin denture teeth.  相似文献   

4.
The planting of sand‐binding vegetation in the Shapotou region at the southeastern edge of the Tengger Desert began in 1956. Over the past 46 years, it has not only insured the smooth operation of the Baotou–Lanzhou railway in the sand dune section but has also played an important role in the restoration of the local eco‐environment; therefore, it is viewed as a successful model for desertification control and ecological restoration along the transport line in the arid desert region of China. Long‐term monitoring and focused research show that within 4–5 years of establishment of sand‐binding vegetation, the physical surface structure of the sand dunes stabilized, and inorganic soil crusts formed by atmospheric dust gradually turned into microbiotic crusts. Among the organisms comprising these crusts are cryptogams such as desert algae and mosses. In the 46 years since establishing sand‐binding vegetation, some 24 algal species occurred in the crusts. However, only five moss species were identified, which was fewer than the species number in the crust of naturally fixed sand dunes. Other results of the planting were that near‐surface wind velocity in the 46‐year‐old vegetation area was reduced by 54.2% compared with that in the moving sand area; soil organic matter increased from 0.06% in moving sand dunes to 1.34% in the 46‐year‐old vegetation area; the main nutrients N, P, K, etc., in the desert ecosystem increased; soil physicochemical properties improved; and soil‐forming processes occurred in the dune surface layer. Overall, establishment of sand‐binding vegetation significantly impacted soil water cycles, creating favorable conditions for colonization by many herbaceous species. These herbaceous species, in turn, facilitated the colonization and persistence of birds, insects, soil animals, and desert animals. Forty‐six years later, some 28 bird species and 50 insect species were identified in the vegetated dune field. Thus, establishment of a relatively simple community of sand‐binding species led to the transformation of the relatively barren dune environment into a desert ecosystem with complex structure, composition, and function. This restoration effort shows the potential for short‐term manipulation of environmental variables (i.e., plant cover via artificial vegetation establishment) to begin the long‐term process of ecological restoration, particularly in arid climates, and demonstrates several techniques that can be used to scientifically monitor progress in large‐scale restoration projects.  相似文献   

5.
In arid zones, precipitation distribution is extremely uneven, with saline‐waterlogging and dry–moist cycles appearing frequently, which negatively impact on seed germination and seedling establishment. The responses of two halophytes, Suaeda physophora and Haloxylon ammodendron, and a xerophyte, Haloxylon persicum, to saline‐waterlogging and dry–moist cycles were studied. The results showed that aeration increased seed germination for all species when seeds were submerged in NaCl, especially for xerophyte. Compared with S. physophora and H. ammodendron, seed germination, recovery germination, and total germination of H. persicum were much lower when seeds were submerged in 700 mm NaCl, especially for the recovery germination and total germination of nongerminated seeds when the seeds were desiccated and then transferred to distilled water. However, when the seeds were submerged in 700 mm NaCl with aeration, the seed germination, recovery germination, and total germination of nongerminated seeds transferred to distilled water increased dramatically for H. persicum. No adverse effect of desiccation was found on those values of nongerminated seeds pretreated in NaCl with or without aeration for the two halophytes. In conclusion, seeds of the two halophytes were more tolerant to waterlogging and dry–moist cycles than seeds of the xerophyte during emergence under saline conditions; these traits may be important for halophytes to survive extreme saline environments during the seed germination stage.  相似文献   

6.
水分是荒漠植物生长最主要的限制因子,藓类结皮作为荒漠土壤表层重要覆被物,对土壤水分蒸发入渗具有重要影响。研究表明,在全球气候变化背景下,不确定的降水格局变化导致结皮层藓类植物出现集群死亡现象,但这一过程对荒漠地表土壤水分蒸发与入渗过程的影响及其机理尚不清楚。以古尔班通古特沙漠齿肋赤藓结皮为研究对象,利用便携式渗透计和蒸发仪,研究了结皮层藓类植物死亡对土壤水分蒸发与入渗的影响。结果表明,与裸沙相比,藓类结皮的存在显著抑制了水分入渗,而藓类植物死亡的结皮层抑制作用最大,其初渗速率、稳渗速率和累积入渗量分别是活藓类结皮的39.89%、85.91%及64.48%,仅为裸沙的5.96%、13.13%及20.42%。在水分蒸发初期,裸沙的水分蒸发速率明显高于活藓类结皮和藓类植物死亡的结皮层,但藓类植物死亡的结皮层维持相对稳定的蒸发速率的时间长于裸沙和活藓类结皮,这也导致最终累计蒸发量以藓类植物死亡的结皮层最高、裸沙最低。可见,荒漠生物土壤结皮中藓类植物死亡会明显减少土壤水分入渗、增大水分蒸发,进一步影响荒漠表层土壤水分格局,从而影响生物土壤结皮与维管植物的水分利用关系。  相似文献   

7.
生物结皮对5种不同形态的荒漠植物种子萌发的影响   总被引:4,自引:2,他引:4       下载免费PDF全文
生物结皮广泛分布于干旱、半干旱区, 强烈影响着土壤表层理化特性, 进而对种子散布、萌发和定居产生影响。目前关于生物结皮与植物种子萌发关系的研究结论存在争议。该文通过室内人工控制实验, 研究了生物结皮对古尔班通古特沙漠5种具不同种子形态特征的荒漠植物白梭梭(Haloxylon persicum)、蛇麻黄(Ephedra distachya)、角果藜(Ceratocarpus arenaarius)、涩芥(Malcolmia africana)和狭果鹤虱(Lappula semiglabra)的种子萌发的影响。结果表明, 在干燥和湿润两种条件下, 生物结皮对不同形态植物种子萌发均具有不同的作用。在干燥条件下, 生物结皮显著抑制了角果藜和涩芥种子的萌发(p<0.05), 对其它3种植物无显著影响; 而湿润条件下, 生物结皮显著抑制了白梭梭、角果藜和狭果鹤虱种子的萌发(p<0.05), 对蛇麻黄、涩芥则无显著影响。  相似文献   

8.
Subterranean rodents are often considered as ecosystem engineers because they physically modify the surrounding environment due to their burrowing and foraging activities. Understanding the modifications that ecosystem engineering species exert on the environment are of crucial importance in ecology studies, since they may affect the structure and population dynamics of several species, including lizards. Thus, the objective of the present study is to test the effect that Ctenomys mendocinus exert in the abundance of Liolaemus ruibali and its escape behaviour, in a high-elevation desert. Lizard abundance was estimated using observation transects and escape behaviour was studied with an experiment where the observer was considered by lizards as a potential predator and distance before the lizard flees was measured. All the variables were compared between areas disturbed by C. mendocinus and undisturbed ones. We found that L. ruibali was favoured by C. mendocinus activity. By creating burrow systems that serve as refuges for lizards, this rodent species increases the abundance of L. ruibali and reduces its flight distance, thereby improving its escape performance. We may suggest that C. mendocinus, through the construction of burrow systems, would be acting as an ecosystem engineer in Puna desert, affecting L. ruibali ecology.  相似文献   

9.
Leaf flushing during the dry season: the paradox of Asian monsoon forests   总被引:3,自引:0,他引:3  
Aim Most deciduous species of dry monsoon forests in Thailand and India form new leaves 1–2 months before the first monsoon rains, during the hottest and driest part of the year around the spring equinox. Here we identify the proximate causes of this characteristic and counterintuitive ‘spring‐flushing’ of monsoon forest trees. Location Trees of 20 species were observed in semi‐deciduous dry monsoon forests of northern Thailand with a 5–6‐month‐long severe dry season and annual rainfall of 800–1500 mm. They were growing on dry ridges (dipterocarp–oak forest) or in moist gullies (mixed deciduous–evergreen forest) at 680–750 m altitude near Chiang Mai and in a dry lowland stand of Shorea siamensis in Uthai Thani province. Methods Two novel methods were developed to analyse temporal and spatial variation in vegetative dry‐season phenology indicative of differences in root access to subsoil water reserves. Results Evergreen and leaf exchanging species at cool, moist sites leafed soon after partial leaf shedding in January–February. Drought‐resistant dipterocarp species were evergreen at moist sites, deciduous at dry sites, and trees leafed soon after leaf shedding whenever subsoil water was available. Synchronous spring flushing of deciduous species around the spring equinox, as induced by increasing daylength, was common in Thailand's dipterocarp–oak forest and appears to be prevalent in Indian dry monsoon forests of the Deccan peninsula with its deep, water‐storing soils. Main conclusions In all observed species leafing during the dry season relied on subsoil water reserves, which buffer trees against prolonged climatic drought. Implicitly, rainfall periodicity, i.e. climate, is not the principal determinant of vegetative tree phenology. The establishment of new foliage before the summer rains is likely to optimize photosynthetic gain in dry monsoon forests with a relatively short, wet growing season.  相似文献   

10.
How does range expansion affect genetic diversity in species with different ecologies, and do different types of genetic markers lead to different conclusions? We addressed these questions by assessing the genetic consequences of postglacial range expansion using mitochondrial DNA (mtDNA) and nuclear restriction site‐associated DNA (RAD) sequencing in two congeneric and codistributed rodents with different ecological characteristics: the desert kangaroo rat (Dipodomys deserti), a sand specialist, and the Merriam's kangaroo rat (Dipodomys merriami), a substrate generalist. For each species, we compared genetic variation between populations that retained stable distributions throughout glacial periods and those inferred to have expanded since the last glacial maximum. Our results suggest that expanded populations of both species experienced a loss of private mtDNA haplotypes and differentiation among populations, as well as a loss of nuclear single‐nucleotide polymorphism (SNP) private alleles and polymorphic loci. However, only D. deserti experienced a loss of nucleotide diversity (both mtDNA and nuclear) and nuclear heterozygosity. For all indices of diversity and differentiation that showed reduced values in the expanded areas, D. deserti populations experienced a greater degree of loss than did D. merriami populations. Additionally, patterns of loss in genetic diversity in expanded populations were substantially less extreme (by two orders of magnitude in some cases) for nuclear SNPs in both species compared to that observed for mitochondrial data. Our results demonstrate that ecological characteristics may play a role in determining genetic variation associated with range expansions, yet mtDNA diversity loss is not necessarily accompanied by a matched magnitude of loss in nuclear diversity.  相似文献   

11.
Unlike most other green algae, trebouxiophyceans are predominantly aerophytic and contain many symbiotic representatives. In recent years, a number of new terrestrial trebouxiophycean taxa were described from soils, tree bark, and lichens. The present phylogenetic study reveals three new lineages of free‐living trebouxiophyceans found in North American desert soil crusts and proposes new generic names to accommodate them: Desertella, Eremochloris, and Xerochlorella. This survey of desert isolates also led to discovery of representatives of seven existing genera of trebouxiophyceans. Two of these genera have never been reported to contain desert representatives and one was known previously only from aquatic habitats. Furthermore, we expand the known geographic range of the recently described genus Chloropyrula, heretofore only known from the Ural Mountains. We demonstrate that the diversity of trebouxiophyceans is still underestimated and poorly understood, and that most major trebouxiophycean lineages contain desert‐dwelling taxa.  相似文献   

12.
The aim of this study is to acquire insight in the initial vegetation development on active drifting sands in relation to geomorphological processes. For this purpose the algal vegetation and surface dynamics were monitored on a sand hill with active drifting sand, and on a bare slope within a terrain covered with Polytrichum piliferum located in the Laarder Wasmeer (The Netherlands).There is a successional development from an algal community dominated by the cyanobacterium Oscillatoria spp., through the crust in which initially the green alga Klebsormidium and later the cyanobacterium Synechococcus predominates, eventually succeeded by the green alga Zygogonium ericetorum. In this phase the sand is stabilized. The areal extent of algal crusts on the active drifting sand area is greatest during the winter, contrastingly highest biomass values are found during the summer and autumn in mature Zygogonium crusts.Substrate instability due to the action of wind clearly limits algal growth and vegetational development on the sand hill. The algal crust seldom reaches the stage of maturity. Near-flat ground is more easily stabilized. Unlike the algae found in coastal dune area and the initial pioneers in the Laarder Wasmeer area, the Zygogonium crust is water repellent when dry. Consequently increasing surface stability by algal crust development is accompanied by higher surface runoff on sloping areas.  相似文献   

13.
Mirit Eynan  Razi Dmi'el 《Oecologia》1993,95(2):290-294
Many desert lizards show reduced rates of cutaneous water loss (CWL) compared to their counterparts from more humid environments. It is not clear yet whether reduced CWL is connected to the taxonomic position of the lizard studied, or is affected more by environmental or experimental conditions. To investigate this, we measured the skin resistance to water transfer, R s, in five closely related lizard taxa of the genus Agama. These diurnal lizards are distributed in Israel from mesic-Mediterranean to extreme desert biotopes. The highest R s (738 s cm-1) and the lowest CWL (0.160 mg cm-2 h-1) were found in Agama sinaita, which lives in the most arid habitat. The lowest R s (234 s cm-1) and the highest CWL (0.548 mg cm-2 h-1) were found in A. stellio ssp., which occupies mesic habitats. In addition, only the desert species were able to change their R s in accordance with the changing experimental conditions. These R s changes, which probably reflect vasomotor responses, were more pronounced in A. sinaita and presumably enable the desert species to control their CWL in a hot and dry environment.  相似文献   

14.
Aim In an effort to disentangle the ecological processes that confine ectotherms to alpine environments, we studied the thermoregulatory and microhabitat selection behaviours of the rock lizard Iberolacerta cyreni, which is endemic to some mountains of central Spain, and of the wall lizard Podarcis muralis, which is a potential competitor of rock lizards. Location We chose three areas in the Sierra de Guadarrama (central Spain) that differed in their thermal quality [mean deviation of environmental operative temperatures from the lizards’ preferred thermal range (PTR)] and refuge availability: a pine forest (1770 m a.s.l.) in which P. muralis was the only species found, and two mixed shrub and rock sites (1770 and 1900 m a.s.l.) where both species were present. Methods In the field we collected data on refuge availability, sun exposure, body temperature (Tb) and operative temperature (Te). Thus, we estimated the thermal habitat quality of the areas sampled and the thermoregulation accuracy and effectiveness of both species. Results The pine forest had the lowest thermal quality and refuge availability. The lower‐elevation shrub site offered the best thermal quality, but refuges were much scarcer than at the higher‐elevation site. Both species thermoregulated accurately, because mean deviations of body temperature (Tb) from PTR were considerably smaller than those of Te. Podarcis muralis had higher Tb values than did I. cyreni, which had similar Tb values at both shrub sites, whereas P. muralis had lower Tb values at higher elevation. Overall, the thermoregulatory effectiveness (extent to which Tb values are closer to the PTR than are Te values) of both species was similar, but whereas I. cyreni thermoregulated more efficiently at higher elevation, the opposite was true for P. muralis. At the lower‐elevation shrub site, I. cyreni remained closer to refuges than did P. muralis. Main conclusions Our results suggest that the pine forest belt might prevent the expansion of rock lizards towards lower elevations as a result of its low thermal quality and scarcity of refuges, that the thermoregulatory effectiveness of rock lizards in alpine environments depends more on refuge availability than on thermal habitat quality, and that competition with wall lizards is unlikely to explain either the distribution or the thermoregulatory effectiveness of rock lizards.  相似文献   

15.
Abstract We report on the effects of almost a decade of 1080‐fox baiting on a lizard community in a mosaic Australian habitat. Replicated comparisons of baited versus non‐baited control areas with near‐identical histories of bush fires, grazing and climate showed a higher density of red fox tracks (Canis vulpes) in the non‐baited areas. Furthermore, the fox‐baited areas showed a more than five times higher density of sand goannas (Varanus gouldii), a species that strongly overlaps the red fox in food niche breadth and is itself a direct target of fox predation, in particular its eggs and young. Exclusion of predators from a natural habitat led to significant increases in the density of small lizards, suggesting that predation can drive lizard population dynamics in this ecosystem. Replicated pitfall‐trapping in three habitats in the control areas (with high fox and low goanna density) versus the baited areas (with low fox and high goanna density) showed that fox baiting had positive effects on the density of diurnal scincid lizards in open grassland, whereas the control areas showed higher density of nocturnal gecko lizards. Our interpretation is that fox removal may result in a shift in the top predator towards the sand goanna. Historically, this indigenous, endemic species was the natural top predator. It has co‐evolved with its prey and that may have moulded it into a more efficient lizard predator per encounter than the introduced fox.  相似文献   

16.
Mitton JB  Duran KL 《Molecular ecology》2004,13(5):1259-1264
Three previous reports of microgeographical variation of glycerate dehydrogenase (Gly) frequencies in piñon, Pinus edulis, established the hypothesis that Gly frequencies contribute to adaptation to heterogeneous environments, specifically to variation in soil moisture. In each of these studies, the frequency of the Gly‐3 allele or of Gly‐33 homozygotes was higher on dry sites than on nearby moist sites. Here we attempt to extend these observations by testing the hypothesis that Gly frequencies respond to soil moisture variation on a range‐wide scale. Gly frequencies were surveyed in 11 natural populations, and the frequency of the Gly‐3 allele varied from 0.27 to 0.65 among the sample sites. Elevation varied from 1650 to 3100 m, and summer precipitation, defined as precipitation from April to August, varied from 13.7 to 26.4 cm. The soil types at the collection sites were schist, quaternary volcanic or a mixture of shale and sandstone. Logistic regression revealed that Gly frequencies did not respond to either elevation or soil type, but were related to summer precipitation (P < 0.01). The correlation between summer precipitation and the frequency of the Gly‐3 allele was r = ?0.92 (P < 0.001). Thus, the patterns of differentiation on microgeographical scales are consistent with greater differentiation on a range‐wide scale.  相似文献   

17.
A comprehensive knowledge on the genetic basis of coloration is crucial to understand how new colour phenotypes arise and how they contribute to the emergence of new species. Variation in melanocortin‐1 receptor (Mc1r), a gene that has been reported as a target for repeated evolution in a wide range of vertebrate taxa, was assessed in European ocellated lizards (Lacerta lepida) to search for associations with melanin‐based colour phenotypes. Lacerta lepida subspecies’ distribution is associated with the three major bio‐climatic regions in the Iberian Peninsula. A nonconserved and derived substitution (T162I) was associated with the L. l. nevadensis phenotype (prevalence of brown scales). Another substitution (S172C) was associated with the presence of black scales in both L. l. lepida and L. l. iberica, but no mutations were found to be associated with the higher proportion of black in L. l. iberica. Extensive genotyping of Mc1r along the contact zone between L. l. nevadensis and L. l. lepida revealed low gene flow (only two hybrids detected). The implications of these findings are discussed in the context of previous knowledge about the evolutionary history of ocellated lizards.  相似文献   

18.
周晓兵  尹本丰  张元明 《生态学报》2016,36(11):3197-3205
生物土壤结皮是荒漠生态系统的重要组分,其如何响应氮沉降的增加还鲜见报道。以古尔班通古特沙漠中3种不同类型生物土壤结皮为研究对象,设置0(N0)、0.3(N0.3)、0.5(N0.5)、1.0(N1)、1.5(N1.5)和3.0(N3)g N m-2a-16个不同氮素处理浓度,研究氮素增加对生物土壤结皮生长和光合生理的影响。结果表明,经过3a的模拟增氮实验,藻类结皮、地衣结皮和苔藓结皮的总叶绿素、实际光化学效率YII、可溶性糖含量以及苔藓个体生物量随着氮素增加先增加后减少,但各指标的最大值位于不同的浓度处理。氮素增加对藻类和地衣结皮类胡萝卜素影响不显著,而低氮(N0.3-N0.5)对苔藓类胡萝卜素具有促进作用。高氮(N3)对3种类型结皮的最大光化学效率Fv/Fm均具有抑制作用。氮素增加对藻类结皮和地衣结皮的可溶性蛋白影响较小,但对苔藓结皮可溶性蛋白的影响表现为先增加后降低的趋势。3种结皮类型中,苔藓结皮对氮素增加的响应最为敏感,受影响最大,其次是藻类和地衣结皮。研究表明,低浓度氮沉降对3种类型结皮生长的影响较小,但是高浓度氮沉降则具有明显的负效应。  相似文献   

19.
There is a general assumption that intraspecific populations originating from relatively arid climates will be better adapted to cope with the expected increase in drought from climate change. For ecologically and economically important species, more comprehensive, genecological studies that utilize large distributions of populations and direct measures of traits associated with drought‐resistance are needed to empirically support this assumption because of the implications for the natural or assisted regeneration of species. We conducted a space‐for‐time substitution, common garden experiment with 35 populations of coast Douglas‐fir (Pseudotsuga menziesii var. menziesii) growing at three test sites with distinct summer temperature and precipitation (referred to as ‘cool/moist’, ‘moderate’, or ‘warm/dry’) to test the hypotheses that (i) there is large genetic variation among populations and regions in traits associated with drought‐resistance, (ii) the patterns of genetic variation are related to the native source‐climate of each population, in particular with summer temperature and precipitation, (iii) the differences among populations and relationships with climate are stronger at the warm/dry test site owing to greater expression of drought‐resistance traits (i.e., a genotype × environment interaction). During midsummer 2012, we measured the rate of water loss after stomatal closure (transpirationmin), water deficit (% below turgid saturation), and specific leaf area (SLA, cmg?1) on new growth of sapling branches. There was significant genetic variation in all plant traits, with populations originating from warmer and drier climates having greater drought‐resistance (i.e., lower transpirationmin, water deficit and SLA), but these trends were most clearly expressed only at the warm/dry test site. Contrary to expectations, populations from cooler climates also had greater drought‐resistance across all test sites. Multiple regression analysis indicated that Douglas‐fir populations from regions with relatively cool winters and arid summers may be most adapted to cope with drought conditions that are expected in the future.  相似文献   

20.
Theory predicts that inbreeding depression (ID) should decline via purging in self‐fertilizing populations. Yet, intraspecific comparisons between selfing and outcrossing populations are few and provide only mixed support for this key evolutionary process. We estimated ID for large‐flowered (LF), predominantly outcrossing vs. small‐flowered (SF), predominantly selfing populations of the dune endemic Camissoniopsis cheiranthifolia by comparing selfed and crossed progeny in glasshouse environments differing in soil moisture, and by comparing allozyme‐based estimates of the proportion of seeds selfed and inbreeding coefficient of mature plants. Based on lifetime measures of dry mass and flower production, ID was stronger in nine LF populations [mean δ = 1?(fitness of selfed seed/fitness of outcrossed seed) = 0.39] than 16 SF populations (mean δ = 0.03). However, predispersal ID during seed maturation was not stronger for LF populations, and ID was not more pronounced under simulated drought, a pervasive stress in sand dune habitat. Genetic estimates of δ were also higher for four LF (δ = 1.23) than five SF (δ = 0.66) populations; however, broad confidence intervals around these estimates overlapped. These results are consistent with purging, but selective interference among loci may be required to maintain strong ID in partially selfing LF populations, and trade‐offs between selfed and outcrossed fitness are likely required to maintain outcrossing in SF populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号