首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the wild, Bombus spp. bees may contract infections of the trypanosome parasite Crithidia bombi from their nestmates or from others while foraging on contaminated flowers. We expected that as C. bombi is transmitted repeatedly among related workers within a colony, the parasite population would become more successful in this relatively homogeneous host population and less successful in individuals from unrelated colonies of the same or different species. To test our prediction, we serially passaged cocktails of C. bombi strains through workers from the same colony, taking the intensity of infection in related versus unrelated workers as a measure of parasite success at each step in the serial transfer. Using a repeated measures ANOVA, we found the ability of C. bombi to exploit Bombus spp. hosts did not increase within a colony, but did decrease for infections in workers from unrelated colonies. This reduction in success is most likely due to a gradual loss of appropriate C. bombi strains from the infecting the population as the cocktail is 'filtered' during the serial passage within a given colony, without a corresponding increase in overall intensity of the surviving strains.  相似文献   

2.
Nosema bombi is an obligate intracellular parasite that infects different bumblebee species at a substantial, though variable, rate. To date its pathology and impact on host fitness are not well understood. We performed a laboratory experiment investigating the pathology and fitness effects of this parasite on the bumblebee Bombus terrestris. We experimentally infected one group of colonies with N. bombi spores at the start of the worker production, while a second uninfected group of colonies served as controls. During colony development we collected live workers for dissections to measure infection intensities. In parallel, we measured several life history traits, to investigate costs to the host. We succeeded in infecting 11 of 16 experimental colonies. When infection occurred at an early stage of colony development, virtually all individuals were infected, with spores being found in a number of tissues, and the functional fitness of males and young queens was reduced to zero. Further, the survival of workers from infected colonies and infected males were reduced. With such severe effects, N. bombi appears to decrease its opportunities for transmission to the next host generation.  相似文献   

3.
Thelohania solenopsae is a pathogen of the red imported fire ant, Solenopsis invicta, which debilitates queens and eventually causes the demise of colonies. Reductions of infected field populations signify its potential usefulness as a biological control agent. Thelohania solenopsae can be transmitted by introducing infected brood into a colony. The social forms of the fire ant, that is, monogyny (single queen per colony) or polygyny (multiple queens per colony), are associated with different behaviors, such as territoriality, that affect the degree of intercolony brood transfer. T. solenopsae was found exclusively in polygyne colonies in Florida. Non-synchronous infections of queens and transovarial transmission favor the persistence and probability of detecting infections in polygynous colonies. However, queens or alates with the monogyne genotype can be infected, and infections in monogyne field colonies have been reported from Louisiana and Argentina. Limited independent colony-founding capability and shorter dispersal of alate queens with the polygyne genotype relative to monogyne alates may facilitate the maintenance of infections in local polygynous populations. Demise of infected monogyne colonies can be twice as fast as in polygyne colonies and favors the pathogen's persistence in polygyne fire ant populations. The social form of the fire ant reflects different physiological and behavioral aspects of the queen and colony that will impact T. solenopsae spread and ultimate usefulness for biological control.  相似文献   

4.
Transmission to a new host is a critical step in the life cycle of a parasite. Variation in the characteristics of the transmission process, for example, due to host demography, is assumed to select for different variants of the parasite. We have experimentally tested how variation in the time to transmission (early or late after infection) and exposure to adverse conditions outside the host (immediate or delayed contact with new host) interact to determine the success of the infection in the next host, using the trypanosome Crithidia bombi infecting its bumblebee host, Bombus terrestris. These two experimentally manageable steps mimic the processes of within- and among-host selection for the parasite. We found that early transmission led to higher infection success in the next host as did immediate contact with the new host. However, there was no interaction between the two parameters as would be expected if early-transmitted variants, resulting from rapid multiplication within the host, would be less adapted to the conditions encountered during the between-host transfer or infection of the next host. Furthermore, typing the genetic variability of the parasites with microsatellites showed that the four different transmission routes of our experiment selected for different degrees of allelic diversity of the infecting parasite populations. The results support the idea that variation in the transmission process selects for different genotypic variants of the parasite. At the same time, the relationship of allelic diversity with infection intensity suggested that the coinfection model of May and Nowak (1995) may be appropriate, where each parasite is able to infect and multiply independent of others within the same host.  相似文献   

5.
Reciprocal selection pressures in host-parasite systems drive coevolutionary arms races that lead to advanced adaptations in both opponents. In the interactions between social parasites and their hosts, aggression is one of the major behavioural traits under selection. In a field manipulation, we aimed to disentangle the impact of slavemaking ants and nest density on aggression of Temnothorax longispinosus ants. An early slavemaker mating flight provided us with the unique opportunity to study the influence of host aggression and demography on founding decisions and success. We discovered that parasite queens avoided colony foundation in parasitized areas and were able to capture more brood from less aggressive host colonies. Host colony aggression remained consistent over the two-month experiment, but did not respond to our manipulation. However, as one-fifth of all host colonies were successfully invaded by parasite queens, slavemaker nest foundation acts as a strong selection event selecting for high aggression in host colonies.  相似文献   

6.
The dynamics of host – parasite interactions can change dramatically over the course of a chronic infection as the internal (physiological) and external (environmental) conditions of the host change. When queens of social insects found a colony, they experience changes in both their physiological state (they develop their ovaries and begin laying eggs) and the social environment (they suddenly stop interacting with the other members of the mother colony), making this an excellent model system for examining how these factors interact with chronic infections. We investigated the dynamics of host – viral interactions in queens of Solenopsis invicta (fire ant) as they transition from mating to colony founding/brood rearing to the emergence of the first workers. We examined these dynamics in naturally infected queens in two different social environments, where queens either founded colonies as individuals or as pairs. We hypothesized that stress associated with colony founding plays an important role in the dynamics of host – parasite interactions. We also hypothesized that different viruses have different modalities of interaction with the host that can be quantified by physiological measures and genomic analysis of gene expression in the host. We found that the two most prevalent viruses, SINV‐1 and SINV‐2, are associated with different fitness costs that are mirrored by different patterns of gene expression in the host. In fact SINV‐2, the virus that imposes the significant reduction of a queen's reproductive output is also associated with larger changes of global gene expression in the host. These results show the complexity of interactions between S. invicta and two viral parasites. Our findings also show that chronic infections by viral parasites in insects are dynamic processes that may pose different challenges in the host, laying the groundwork for interesting ecological and evolutionary considerations.  相似文献   

7.
Among colonies of social insects, the worker turnover rate (colony ‘pace’) typically shows considerable variation. This has epidemiological consequences for parasites, because in ‘fast-paced’ colonies, with short-lived workers, the time of parasite residence in a given host will be reduced, and further transmission may thus get less likely. Here, we test this idea and ask whether pace is a life-history strategy against infectious parasites. We infected bumblebees (Bombus terrestris) with the infectious gut parasite Crithidia bombi, and experimentally manipulated birth and death rates to mimic slow and fast pace. We found that fewer workers and, importantly, fewer last-generation workers that are responsible for rearing sexuals were infected in colonies with faster pace. This translates into increased fitness in fast-paced colonies, as daughter queens exposed to fewer infected workers in the nest are less likely to become infected themselves, and have a higher chance of founding their own colonies in the next year. High worker turnover rate can thus act as a strategy of defence against a spreading infection in social insect colonies.  相似文献   

8.
By sequencing part of the wsp gene of a series of clones, we detected an unusually high diversity of nine Wolbachia strains in queens of three species of leafcutter ants. Up to four strains co-occurred in a single ant. Most strains occurred in two clusters (InvA and InvB), but the social parasite Acromyrmex insinuator hosted two additional infections. The multiple Wolbachia strains may influence the expression of reproductive conflicts in leafcutter ants, but the expected turnover of infections may make the cumulative effects on host ant reproduction complex. The additional Wolbachia infections of the social parasite A. insinuator were almost certainly acquired by horizontal transmission, but may have facilitated reproductive isolation from its closely related host.  相似文献   

9.
Kin selection theory has received some of its strongest support from analyses of within-colony conflicts between workers and queens in social insects. One of these conflicts involves the timing of queen production. In neotropical wasps, new queens are only produced by colonies with just one queen while males are produced by colonies with more queens, a pattern favoured by worker interests. We now show that new colonies, or swarms, have few queens and variable within-colony relatednesses which means that their production is not tied to new queen production. The queens in these swarms are seldom the mothers of the workers in the swarm. Therefore, either colonies producing swarms have very many queens, or queens joining daughter swarms are reproductive losers on the original colonies. As new colony production is not linked to queen production, it can occur at the ecologically optimum time, i.e. the rainy season. This disassociation between queen production and new colony production allows worker interests in sex ratios to prevail without hampering new colony production at the most favourable season, an uncoupling that may contribute to the ecological success of the Epiponini.  相似文献   

10.
Multiple mating by social insect queens increases the genetic diversity among colony members, thereby reducing intracolony relatedness and lowering the potential inclusive fitness gains of altruistic workers. Increased genetic diversity may be adaptive, however, by reducing the prevalence of disease within a nest. Honeybees, whose queens have the highest levels of multiple mating among social insects, were investigated to determine whether genetic variation helps to prevent chronic infections. I instrumentally inseminated honeybee queens with semen that was either genetically similar (from one male) or genetically diverse (from multiple males), and then inoculated their colonies with spores of Ascosphaera apis, a fungal pathogen that kills developing brood. I show that genetically diverse colonies had a lower variance in disease prevalence than genetically similar colonies, which suggests that genetic diversity may benefit colonies by preventing severe infections.  相似文献   

11.
Organisms must make important decisions on how to allocate resources to reproduction. We investigated allocation decisions in the social wasp Vespula maculifrons to understand how social insects make reproductive choices. We first determined how annual colonies apportioned resources to growth and reproduction by analysing developing brood. In contrast to expectations, colonies invested in both growth (workers) and reproduction (males) simultaneously. In addition, colonies showed evidence of producing males in pulses and reversing their reproductive choices by decreasing investment in males late in the season. This reversal is consistent with theory suggesting that colonies decrease production in males if fitness of late emerging males is low. To further investigate reproductive decisions within colonies, we determined if the male mates of multiply-mated queens varied in their reproductive success over time. Sperm use by queens did vary over time suggesting that male success may depend on sperm clumping within the female reproductive tract. Finally, we tested if colony sex ratio conformed to expectations under kin selection theory that nestmate relatedness would positively correlate with investment in new queens if workers controlled sex allocation. Surprisingly, the proportion of queens produced by colonies was negatively correlated with nestmate relatedness, suggesting that allocation may be shaped by advantages arising from increased genetic diversity resulting from multiple mating by queens. Overall, our study suggests that the reproductive decisions of colonies are flexible and may depend both on environmental cues arising from energetic needs of the colony and genetic cues arising from mating behaviours of queens.  相似文献   

12.
Gut bacteria aid their host in digestion and pathogen defense, and bacterial communities that differ in diversity or composition may vary in their ability to do so. Typically, the gut microbiomes of animals living in social groups converge as members share a nest environment and frequently interact. Social insect colonies, however, consist of individuals that differ in age, physiology, and behavior, traits that could affect gut communities or that expose the host to different bacteria, potentially leading to variation in the gut microbiome within colonies. Here we asked whether bacterial communities in the abdomen of Temnothorax nylanderi ants, composed largely of the gut microbiome, differ between different reproductive and behavioral castes. We compared microbiomes of queens, newly eclosed workers, brood carers, and foragers by high‐throughput 16S rRNA sequencing. Additionally, we sampled individuals from the same colonies twice, in the field and after 2 months of laboratory housing. To disentangle the effects of laboratory environment and season on microbial communities, additional colonies were collected at the same location after 2 months. There were no large differences between ant castes, although queens harbored more diverse microbial communities than workers. Instead, we found effects of colony, environment, and season on the abdominal microbiome. Interestingly, colonies with more diverse communities had produced more brood. Moreover, the queens' microbiome composition was linked to egg production. Although long‐term coevolution between social insects and gut bacteria has been repeatedly evidenced, our study is the first to find associations between abdominal microbiome characteristics and colony productivity in social insects.  相似文献   

13.
Simultaneous effects of host and parasite in determining quantitative traits of infection have long been neglected in theoretical and experimental investigations of host-parasite coevolution with the notable exception of gene-for-gene resistance studies. A cross-infection experiment, using five lines of the plant Arabidopsis thaliana and two strains of its oomycete pathogen Hyaloperonospora parasitica, revealed that three traits traditionally considered those of the parasite (number of infected leaves, transmission success, and time until 50% transmission), differed among specific combinations of host and parasite lines, being determined by the two protagonists of the infection. However, the two parasite strains did not differ significantly for most measured phenotypic traits of the infection. Globally, transmission increased with increasing virulence among the different host-parasite combinations, as assumed by most models of evolution of virulence. Surprisingly, however, there was no general relationship between parasite and host fitness, estimated respectively as transmission and seed production. Only one of the two strains showed the expected significant negative genetic correlation between these two variables. Our results thus highlight the importance of taking into account both host and parasite genetic variation because their interaction can lead to unexpected evolutionary outcomes.  相似文献   

14.
Ascosphaera apis causes chalkbrood in honeybees, a chronic disease that reduces the number of viable offspring in the nest. Although lethal for larvae, the disease normally has relatively low virulence at the colony level. A recent study showed that there is genetic variation for host susceptibility, but whether Ascosphaera apis strains differ in virulence is unknown. We exploited a recently modified in vitro rearing technique to infect honeybee larvae from three colonies with naturally mated queens under strictly controlled laboratory conditions, using four strains from two distinct A. apis clades. We found that both strain and colony of larval origin affected mortality rates. The strains from one clade caused 12-14% mortality while those from the other clade induced 71-92% mortality. Larvae from one colony showed significantly higher susceptibility to chalkbrood infection than larvae from the other two colonies, confirming the existence of genetic variation in susceptibility across colonies. Our results are consistent with antagonistic coevolution between a specialized fungal pathogen and its host, and suggest that beekeeping industries would benefit from more systematic monitoring of this chronic stress factor of their colonies.  相似文献   

15.
Abstract.
  • 1 In natural populations, colonies of bumble bees vary in many important life history traits, such as colony size and age at maturity, or the number and sex of reproductives produced. We investigated how the presence of parasites in field populations of the bumble bee Bombus lucorum L. relates to variation in life history traits and reproductive performance. A total of thirty-six colonies was placed in accessible nest sites in the field and monitored at regular intervals throughout a season.
  • 2 Among the life history correlates, early nest foundation was strongly associated with large maximum colony size, old age and large size at maturity, and this in turn with successful production of males and queens, as well as with the number of sexuals produced. Overall, reproductive success was highly skewed with only five colonies producing all the queens. Sixteen colonies failed to reproduce altogether.
  • 3 The social parasite Psithyrus was abundant early in the Bombus colony cycle and preferentially invaded host nests with many first brood workers and thus disproportionately large size, i.e. those colonies that would otherwise be more likely to reproduce or produce (daughter) queens rather than males. To prevent nest loss, Psithyrus had to be removed soon after invasion. Therefore, the effects reported here can only be crude estimates.
  • 4 Parasitoid conopid flies are likely to cause heavy worker mortality when sexuals are reared by the colonies. Their inferred effect was a reduction in biomass that could be invested in sexuals as well as a shift in the sex ratio at the population level resulting from failure to produce queens. We suggest to group the inferred correlates into ‘early events’ surrounding colony initiation and social parasitism, and ‘late events’ surrounding attained colony size in summer and parasitism by conopid flies. Our evidence thus provides a heuristic approach to understand the factors that affect reproductive success of Bombus colonies.
  相似文献   

16.
Many studies have investigated how social insects behave when a parasite is introduced into their colonies. These studies have been conducted in the laboratory, and we still have a limited understanding of the dynamics of ant-parasite interactions under natural conditions. Here we consider a specialized parasite of ant societies (Ophiocordyceps camponoti-rufipedis infecting Camponotus rufipes) within a rainforest. We first established that the parasite is unable to develop to transmission stage when introduced within the host nest. Secondly, we surveyed all colonies in the studied area and recorded 100% prevalence at the colony level (all colonies were infected). Finally, we conducted a long-term detailed census of parasite pressure, by mapping the position of infected dead ants and foraging trails (future hosts) in the immediate vicinity of the colonies over 20 months. We report new dead infected ants for all the months we conducted the census – at an average of 14.5 cadavers/month/colony. Based on the low infection rate, the absence of colony collapse or complete recovery of the colonies, we suggest that this parasite represents a chronic infection in the ant societies. We also proposed a “terminal host model of transmission” that links the age-related polyethism to the persistence of a parasitic infection.  相似文献   

17.
Many factors contribute to the success of a socially parasitic strategy, especially the ability of the parasite to invade a host colony. However, little research has focused on the choices that may be made by an invading parasite, specifically whether parasites actively discriminate between different host colonies and if they have a preference for colonies of a particular size. When an allodapine social parasite, Inquilina schwarzi, was presented with colonies of their host species, Exoneura robusta, the parasites were found to invade the larger host colonies. However, it could not be ascertained from this study whether the parasites were making an active decision concerning which colony to invade, or whether they were simply more attracted to the larger colonies due to potentially stronger odour cues. Regardless of the cause, the larger host colonies are more at risk of being invaded by a social parasite, which would give parasites greater resources for exploitation and could also provide selection against the large host colony sizes.  相似文献   

18.
Honeybee colonies offer an excellent environment for microbial pathogen development. The highest virulent, colony killing, bacterial agents are Paenibacillus larvae causing American foulbrood (AFB), and European foulbrood (EFB) associated bacteria. Besides the innate immune defense, honeybees evolved behavioral defenses to combat infections. Foraging of antimicrobial plant compounds plays a key role for this “social immunity” behavior. Secondary plant metabolites in floral nectar are known for their antimicrobial effects. Yet, these compounds are highly plant specific, and the effects on bee health will depend on the floral origin of the honey produced. As worker bees not only feed themselves, but also the larvae and other colony members, honey is a prime candidate acting as self‐medication agent in honeybee colonies to prevent or decrease infections. Here, we test eight AFB and EFB bacterial strains and the growth inhibitory activity of three honey types. Using a high‐throughput cell growth assay, we show that all honeys have high growth inhibitory activity and the two monofloral honeys appeared to be strain specific. The specificity of the monofloral honeys and the strong antimicrobial potential of the polyfloral honey suggest that the diversity of honeys in the honey stores of a colony may be highly adaptive for its “social immunity” against the highly diverse suite of pathogens encountered in nature. This ecological diversity may therefore operate similar to the well‐known effects of host genetic variance in the arms race between host and parasite.  相似文献   

19.
Organisms are frequently coinfected by multiple parasite strains and species, and interactions between parasites within hosts are known to influence parasite prevalence and diversity, as well as epidemic timing. Importantly, interactions between coinfecting parasites can be affected by the order in which they infect hosts (i.e. within‐host priority effects). In this study, we use a single‐host, two‐pathogen, SI model with environmental transmission to explore how within‐host priority effects scale up to alter host population‐scale infection patterns. Specifically, we ask how parasite prevalence changes in the presence of different types of priority effects. We consider two scenarios without priority effects and four scenarios with priority effects where there is either an advantage or a disadvantage to being the first to infect in a coinfected host. Models without priority effects always predict negative relationships between the prevalences of both parasites. In contrast, models with priority effects can yield unimodal prevalence relationships where the prevalence of a focal parasite is minimized or maximized at intermediate prevalences of a coinfecting parasite. The mechanism behind this pattern is that as the prevalence of the coinfecting parasite increases, most infections of the focal parasite change from occurring as solo infections, to first arrival coinfections, to second arrival coinfections. The corresponding changes in parasite fitness as the focal parasite moves from one infection class to another then map to changes in focal parasite prevalence. Further, we found that even when parasites interact negatively within a host, they still can have positive prevalence relationships at the population scale. These results suggest that within‐host priority effects can change host population‐scale infection patterns in systematic (and initially counterintuitive) ways, and that taking them into account may improve disease forecasting in coinfected populations.  相似文献   

20.
Higher pathogen and parasite transmission is considered a universal cost of colonial breeding due to the physical proximity of colony members. However, this has rarely been tested in natural colonies, which are structured entities, whose members interact with a subset of individuals and differ in their infection histories. We use a population of common guillemots, Uria aalge, infected by a tick‐borne virus, Great Island virus, to explore how age‐related spatial structuring can influence the infection costs borne by different members of a breeding colony. Previous work has shown that the per‐susceptible risk of infection (force of infection) is different for prebreeding (immature) and breeding (adult) guillemots which occupy different areas of the colony. We developed a mathematical model which showed that this difference in infection risk can only be maintained if mixing between these age groups is low. To estimate mixing between age groups, we recorded the movements of 63 individually recognizable, prebreeding guillemots in four different parts of a major colony in the North Sea during the breeding season. Prebreeding guillemots infrequently entered breeding areas (in only 26% of watches), though with marked differences in frequency of entry among individuals and more entries toward the end of the breeding season. Once entered, the proportion of time spent in breeding areas by prebreeding guillemots also varied between different parts of the colony. Our data and model predictions indicate low levels of age‐group mixing, limiting exposure of breeding guillemots to infection. However, they also suggest that prebreeding guillemots have the potential to play an important role in driving infection dynamics. This highlights the sensitivity of breeding colonies to changes in the behavior of their members—a subject of particular importance in the context of global environmental change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号