首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have previously characterized the interactions of the response regulator ComE from Streptococcus mutans and DNA binding sites through DNase I footprinting and electrophoretic mobility shift assay analysis. Since response regulator functions are often affected by their phosphorylation state, we investigated how phosphorylation affects the biochemical function of ComE. Unlike many response regulators, we found that the phosphorylation state of ComE does not likely play a role in DNA binding affinity but rather seems to induce the formation of an oligomeric form of the protein. The role of this oligomerization state for ComE function is discussed.  相似文献   

2.
3.
DNase I footprinting of the interaction between the replication terminator protein (RTP) of Bacillus subtilis and the inverted repeat region (IRR) at the chromosome terminus, to which it binds to block the clockwise replication fork, showed that two major regions of 41 base pairs (bp) were protected from cleavage. These regions corresponded approximately to the imperfect inverted repeats (IRI and IRII) identified previously. Band retardation analyses of the interaction between RTP and portions of the IRR established that each inverted repeat (IRI or IRII) contained two RTP binding sites. By sedimentation equilibrium in the ultracentrifuge, RTP was found to exist as a dimer of 29 kDa at neutral pH and concentrations above 0.2 g/l. Quantitative studies of the RTP-IRR interaction using [3H]RTP and [32P]IRR showed that the fully saturated complex contained eight RTP monomers per IRR. It is concluded that a dimer of RTP binds to each of the four sites in IRR. The apparent dissociation constant for the interaction was estimated (in the presence of 50% glycerol) to be 1.2 x 10(-11) M (dimer of RTP). Glycerol was found to have a marked effect on the affinity of RTP for the IRR and on the relative amounts of the interaction complexes formed; in the absence of glycerol the dissociation constant was approximately 50-fold higher and there was pronounced co-operative binding of RTP dimers to adjacent sites in each inverted repeat. Examination of the DNA sequence in IRI and IRII identified two 8 bp direct repeats in each. The regions protected from DNase I cleavage in each inverted repeat and the protection afforded by a core sequence spanning just one of the 8 bp direct repeats were consistent with each 8 bp repeat representing a recognition sequence for the RTP dimer. A model describing the binding of RTP to the IRR is presented.  相似文献   

4.
5.
6.
7.
8.
The results of quantitative footprinting studies involving the antiviral agent netropsin and a DNA-cleaving cationic metalloporphyrin complex are presented. An analysis of the footprinting autoradiographic spot intensities using a model previously applied to footprinting studies involving the enzyme DNase I [Ward, B., Rehfuss, R., Goodisman, J., & Dabrowiak, J. C. (1988) Biochemistry 27, 1198-1205] led to very low values for netropsin binding constants on a restriction fragment from pBR-322 DNA. In this work, we show that, because the porphyrin binds with high specificity to DNA, it does not report site loading information in the same manner as does DNase I. We elucidate a model involving binding equilibria for individual sites and include competitive binding of drug and porphyrin for the same site. The free porphyrin and free drug concentrations are determined by binding equilibria with the carrier (calf thymus DNA) which is present in excess and acts as a buffer for both. Given free porphyrin and free netropsin concentrations for each total drug concentration in a series of footprinting experiments, one can calculate autoradiographic spot intensities in terms of the binding constants of netropsin to the various sites on the 139 base pair restriction fragment. The best values of these binding constants are determined by minimizing the sum of the squared differences between calculated and experimental footprinting autoradiographic spot intensities. Although the determined netropsin binding constants are insensitive to the value assumed for the porphyrin binding constant toward its highest affinity sites, the best mean-square deviation between observed and calculated values, D, depends on the choice of (average) drug binding constant to carrier DNA, Kd.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
TraM is a DNA binding protein required for conjugative transfer of the self-transmissible IncF group of plasmids, including F, R1, and R100. F TraM binds to three sites in F oriT: two high affinity binding sites, sbmA and sbmB, which are direct repeats of nearly identical sequence involved in the autoregulation of the traM gene; and a lower affinity site, sbmC, an inverted repeat important for transfer, which is situated nearest to the nic site where transfer originates. TraM bound cooperatively to its binding sites at oriT; the presence of sbmA and sbmB increased the affinity for sbmC 10-fold. Bending of oriT DNA by TraM was minimal, suggesting that TraM, a tetramer, was able to loop the DNA when bound to sbmA and sbmB simultaneously. Hydroxyl radical footprinting of DNA of sbmA and sbmC revealed that TraM contacted the DNA within a region previously delineated by DNase I footprinting. TraM protected the CT bases within the sequence CTAG, which occurred at 12-base intervals on the top and bottom strand of sbmA, most consistently with other protected bases. The footprint on sbmC revealed that the predicted inverted repeats were protected by TraM with a pattern that began at the center of the repeats and radiated outward at 11-12 base intervals toward the 5'-ends of either strand. At high protein concentrations, this pattern extended beyond the footprint defined by DNase I, suggesting that the DNA was wrapped around the protein forming a nucleosome-like structure, which could aid in preparing the DNA for transfer.  相似文献   

10.
A DNA-binding factor (VF1) partially purified from Anabaena sp. strain PCC 7120 vegetative cell extracts by heparin-Sepharose chromatography was found to have affinity for the xisA upstream region. The xisA gene is required for excision of an 11-kilobase element from the nifD gene during heterocyst differentiation. Previous studies of the xisA upstream sequences demonstrated that deletion of this region is required for the expression of xisA from heterologous promoters in vegetative cells. Mobility shift assays with a labeled 250-base-pair fragment containing the binding sites revealed three distinct DNA-protein complexes. Competition experiments showed that VF1 also bound to the upstream sequences of the rbcL and glnA genes, but the rbcL and glnA fragments showed only single complexes in mobility shift assays. The upstream region of the nifH gene formed a weak complex with VF1. DNase footprinting and deletion analysis of the xisA binding site mapped the binding to a 66-base-pair region containing three repeats of the consensus recognition sequence ACATT.  相似文献   

11.
12.
13.
14.
A Abu-Daya  P M Brown    K R Fox 《Nucleic acids research》1995,23(17):3385-3392
We have examined the interaction of distamycin, netropsin, Hoechst 33258 and berenil, which are AT-selective minor groove-binding ligands, with synthetic DNA fragments containing different arrangements of AT base pairs by DNase I footprinting. For fragments which contain multiple blocks of (A/T)4 quantitative DNase I footprinting reveals that AATT and AAAA are much better binding sites than TTAA and TATA. Hoechst 33258 shows that greatest discrimination between these sites with a 50-fold difference in affinity between AATT and TATA. Alone amongst these ligands, Hoechst 33258 binds to AATT better than AAAA. These differences in binding to the various AT-tracts are interpreted in terms of variations in DNA minor groove width and suggest that TpA steps within an AT-tract decrease the affinity of these ligands. The behaviour of each site also depends on the flanking sequences; adjacent pyrimidine-purine steps cause a decrease in affinity. The precise ranking order for the various binding sites is not the same for each ligand.  相似文献   

15.
The incision steps of Escherichia coli nucleotide excision repair are mediated by the UvrABC nuclease complex. We have previously shown that the UvrABC nuclease specifically incises apyrimidinic (AP) sites less efficiently than o-benzylhydroxylamine-modified apyrimidinic (BA) sites. To investigate these differences, quantitative DNase I footprinting titration studies were performed. The UvrA binding isotherms were similar for both the AP site (Kd = 6 x 10(-9) M) and the bulkier BA lesion (Kd = 14 x 10(-9) M), despite the fact that the extent of incision differs for these two lesions. It was also found that the relative binding affinity of the preincision UvrA2B complex to the AP and BA substrates differs significantly with estimated apparent equilibrium dissociation constants (Kd) of 4 x 10(-9) M and 80 x 10(-9) to 120 x 10(-9) M, respectively. These results indicate that incision efficiency does not correlate to UvrA binding affinity, but is a direct result of interactions between the UvrA2B complex and the site of the DNA damage. It is also shown that high UvrA concentrations are inhibitory to the UvrABC nuclease reaction.  相似文献   

16.
W Cao 《Biochemistry》1999,38(25):8080-8087
Restriction endonucleases achieve sequence-specific recognition and strand cleavage through the interplay of base, phosphate backbone, and metal cofactor interactions. In this study, we investigate the binding kinetics of TaqI endonuclease using the wild-type enzyme and a binding proficient, catalysis deficient mutant TaqI-D137A both in the absence of a metal cofactor and in the presence of Mg2+ or Ca2+. As demonstrated by gel mobility shift analyses, TaqI endonuclease requires a metal cofactor for achieving high-affinity specific binding to its cognate sequence, TCGA. In the absence of a metal cofactor, the enzyme binds all DNA sequences (TaqI cognate site, star site, and nonspecific site) with essentially equal affinity, thereby exhibiting little discrimination. The dissociation constant of the cognate sequence in the presence of Mg2+ at 60 degrees C is 0. 26 nM, a value comparable to our previously reported Km of 0.5 nM measured under steady-state conditions. The TaqI-TCGA-Mg2+ complex is stable, with a half-life of 21 min at 60 degrees C. The boundary of the protein-DNA interface is approximated to be about 18 bp as determined by DNase I footprinting. Data from this study support the notion that a metal cofactor plays a critical role for achieving sequence-specific discrimination in a subset of nucleases, including TaqI, EcoRV, and others.  相似文献   

17.
18.
The developmentally regulated 5'-flanking DNase-I-hypersensitive site of the chicken beta H-globin gene in nuclei contains a subregion which is resistant to DNase I and which disappears when nuclei are extracted with 0.3 M NaCl, suggesting that there are salt-extractable proteins bound to sequences within this region. The 0.3 M NaCl extract contains two proteins which bind in vitro to these sequences. One of the binding sequences has an inverted repeat very similar to that bound by TGGCA protein. Partially purified TGGCA protein from chicken liver binds to this sequence in vitro giving exactly the same footprint as that obtained with erythroid nuclear proteins. Similarly TGGCA protein binds to an inverted repeat with the beta A-globin 5'-hypersensitive site giving a footprint identical to that obtained with erythroid nuclear protein extracts. From competition footprinting experiments and the electrophoretic mobility of the protein-DNA complex, it is concluded that the erythroid proteins previously described as binding to the beta H- and beta A-globin inverted repeats within the 5'-flanking hypersensitive sites both belong to the TGGCA protein family.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号