共查询到20条相似文献,搜索用时 0 毫秒
1.
Low-temperature growth of Shewanella oneidensis MR-1 总被引:1,自引:0,他引:1
Abboud R Popa R Souza-Egipsy V Giometti CS Tollaksen S Mosher JJ Findlay RH Nealson KH 《Applied and environmental microbiology》2005,71(2):811-816
Shewanella oneidensis MR-1 is a mesophilic bacterium with a maximum growth temperature of approximately 35 degrees C but the ability to grow over a wide range of temperatures, including temperatures near zero. At room temperature ( approximately 22 degrees C) MR-1 grows with a doubling time of about 40 min, but when moved from 22 degrees C to 3 degrees C, MR-1 cells display a very long lag phase of more than 100 h followed by very slow growth, with a doubling time of approximately 67 h. In comparison to cells grown at 22 degrees C, the cold-grown cells formed long, motile filaments, showed many spheroplast-like structures, produced an array of proteins not seen at higher temperature, and synthesized a different pattern of cellular lipids. Frequent pilus-like structures were observed during the transition from 3 to 22 degrees C. 相似文献
2.
Meshulam-Simon G Behrens S Choo AD Spormann AM 《Applied and environmental microbiology》2007,73(4):1153-1165
Shewanella oneidensis MR-1 is a facultative sediment microorganism which uses diverse compounds, such as oxygen and fumarate, as well as insoluble Fe(III) and Mn(IV) as electron acceptors. The electron donor spectrum is more limited and includes metabolic end products of primary fermenting bacteria, such as lactate, formate, and hydrogen. While the utilization of hydrogen as an electron donor has been described previously, we report here the formation of hydrogen from pyruvate under anaerobic, stationary-phase conditions in the absence of an external electron acceptor. Genes for the two S. oneidensis MR-1 hydrogenases, hydA, encoding a periplasmic [Fe-Fe] hydrogenase, and hyaB, encoding a periplasmic [Ni-Fe] hydrogenase, were found to be expressed only under anaerobic conditions during early exponential growth and into stationary-phase growth. Analyses of DeltahydA, DeltahyaB, and DeltahydA DeltahyaB in-frame-deletion mutants indicated that HydA functions primarily as a hydrogen-forming hydrogenase while HyaB has a bifunctional role and represents the dominant hydrogenase activity under the experimental conditions tested. Based on results from physiological and genetic experiments, we propose that hydrogen is formed from pyruvate by multiple parallel pathways, one pathway involving formate as an intermediate, pyruvate-formate lyase, and formate-hydrogen lyase, comprised of HydA hydrogenase and formate dehydrogenase, and a formate-independent pathway involving pyruvate dehydrogenase. A reverse electron transport chain is potentially involved in a formate-hydrogen lyase-independent pathway. While pyruvate does not support a fermentative mode of growth in this microorganism, pyruvate, in the absence of an electron acceptor, increased cell viability in anaerobic, stationary-phase cultures, suggesting a role in the survival of S. oneidensis MR-1 under stationary-phase conditions. 相似文献
3.
Galit Meshulam-Simon Sebastian Behrens Alexander D. Choo Alfred M. Spormann 《Applied microbiology》2007,73(4):1153-1165
Shewanella oneidensis MR-1 is a facultative sediment microorganism which uses diverse compounds, such as oxygen and fumarate, as well as insoluble Fe(III) and Mn(IV) as electron acceptors. The electron donor spectrum is more limited and includes metabolic end products of primary fermenting bacteria, such as lactate, formate, and hydrogen. While the utilization of hydrogen as an electron donor has been described previously, we report here the formation of hydrogen from pyruvate under anaerobic, stationary-phase conditions in the absence of an external electron acceptor. Genes for the two S. oneidensis MR-1 hydrogenases, hydA, encoding a periplasmic [Fe-Fe] hydrogenase, and hyaB, encoding a periplasmic [Ni-Fe] hydrogenase, were found to be expressed only under anaerobic conditions during early exponential growth and into stationary-phase growth. Analyses of ΔhydA, ΔhyaB, and ΔhydA ΔhyaB in-frame-deletion mutants indicated that HydA functions primarily as a hydrogen-forming hydrogenase while HyaB has a bifunctional role and represents the dominant hydrogenase activity under the experimental conditions tested. Based on results from physiological and genetic experiments, we propose that hydrogen is formed from pyruvate by multiple parallel pathways, one pathway involving formate as an intermediate, pyruvate-formate lyase, and formate-hydrogen lyase, comprised of HydA hydrogenase and formate dehydrogenase, and a formate-independent pathway involving pyruvate dehydrogenase. A reverse electron transport chain is potentially involved in a formate-hydrogen lyase-independent pathway. While pyruvate does not support a fermentative mode of growth in this microorganism, pyruvate, in the absence of an electron acceptor, increased cell viability in anaerobic, stationary-phase cultures, suggesting a role in the survival of S. oneidensis MR-1 under stationary-phase conditions. 相似文献
4.
5.
Cyclic 3′,5′-adenosine monophosphate (cAMP) phosphodiesterase (CPD) is an enzyme that catalyzes the hydrolysis of cAMP, a signaling molecule affecting diverse cellular and metabolic processes in bacteria. Some CPDs are also known to function in cAMP-independent manners, while their physiological roles remain largely unknown. Here, we investigated physiological roles of CPD in Shewanella oneidensis MR-1, a model environmental bacterium, and report that CPD is involved in amino-acid metabolism. We found that a CPD-deficient mutant of MR-1 (ΔcpdA) showed decreased expression of genes for the synthesis of methionine, S-adenosylmethionine, and histidine and required these three compounds to grow in minimal media. Interestingly, deletion of adenylate cyclases in ΔcpdA did not restore the ability to grow in minimal media, indicating that the amino acid requirements were not due to the accumulation of cAMP. These results suggest that CPD is involved in the regulation of amino acid metabolism in MR-1 in a cAMP-independent manner. 相似文献
6.
Randa Abboud Radu Popa Virginia Souza-Egipsy Carol S. Giometti Sandra Tollaksen Jennifer J. Mosher Robert H. Findlay Kenneth H. Nealson 《Applied microbiology》2005,71(2):811-816
Shewanella oneidensis MR-1 is a mesophilic bacterium with a maximum growth temperature of ≈35°C but the ability to grow over a wide range of temperatures, including temperatures near zero. At room temperature (≈22°C) MR-1 grows with a doubling time of about 40 min, but when moved from 22°C to 3°C, MR-1 cells display a very long lag phase of more than 100 h followed by very slow growth, with a doubling time of ≈67 h. In comparison to cells grown at 22°C, the cold-grown cells formed long, motile filaments, showed many spheroplast-like structures, produced an array of proteins not seen at higher temperature, and synthesized a different pattern of cellular lipids. Frequent pilus-like structures were observed during the transition from 3 to 22°C. 相似文献
7.
Cr(VI) was added to early- and mid-log-phase Shewanella oneidensis (S. oneidensis) MR-1 cultures to study the physiological state-dependent toxicity of Cr(VI). Cr(VI) reduction and culture growth were measured during and after Cr(VI) reduction. Inhibition of growth was observed when Cr(VI) was added to cultures of MR-1 growing aerobically or anaerobically with fumarate as the terminal electron acceptor. Under anaerobic conditions, there was immediate cessation of growth upon addition of Cr(VI) in early- and mid-log-phase cultures. However, once Cr(VI) was reduced below detection limits (0.002 mM), the cultures resumed growth with normal cell yield values observed. In contrast to anaerobic MR-1 cultures, addition of Cr(VI) to aerobically growing cultures resulted in a gradual decrease of the growth rate. In addition, under aerobic conditions, lower cell yields were also observed with Cr(VI)-treated cultures when compared to cultures that were not exposed to Cr(VI). Differences in response to Cr(VI) between aerobically and anaerobically growing cultures indicate that Cr(VI) toxicity in MR-1 is dependent on the physiological growth condition of the culture. Cr(VI) reduction has been previously studied in Shewanella spp., and it has been proposed that Shewanella spp. may be used in Cr(VI) bioremediation systems. Studies of Shewanella spp. provide valuable information on the microbial physiology of dissimilatory metal reducing bacteria; however, our study indicates that S. oneidensis MR-1 is highly susceptible to growth inhibition by Cr(VI) toxicity, even at low concentrations [0.015 mM Cr(VI)]. 相似文献
8.
Ross DE Ruebush SS Brantley SL Hartshorne RS Clarke TA Richardson DJ Tien M 《Applied and environmental microbiology》2007,73(18):5797-5808
The interaction of proteins implicated in dissimilatory metal reduction by Shewanella oneidensis MR-1 (outer membrane [OM] proteins OmcA, MtrB, and MtrC; OM-associated protein MtrA; periplasmic protein CctA; and cytoplasmic membrane protein CymA) were characterized by protein purification, analytical ultracentrifugation, and cross-linking methods. Five of these proteins are heme proteins, OmcA (83 kDa), MtrC (75 kDa), MtrA (32 kDa), CctA (19 kDa), and CymA (21 kDa), and can be visualized after sodium dodecyl sulfate-polyacrylamide gel electrophoresis by heme staining. We show for the first time that MtrC, MtrA, and MtrB form a 198-kDa complex with a 1:1:1 stoichiometry. These proteins copurify through anion-exchange chromatography, and the purified complex has the ability to reduce multiple forms of Fe(III) and Mn(IV). Additionally, MtrA fractionates with the OM through sucrose density gradient ultracentrifugation, and MtrA comigrates with MtrB in native gels. Protein cross-linking of whole cells with 1% formaldehyde show new heme bands of 160, 151, 136, and 59 kDa. Using antibodies to detect each protein separately, heme proteins OmcA and MtrC were shown to cross-link, yielding the 160-kDa band. Consistent with copurification results, MtrB cross-links with MtrA, forming high-molecular-mass bands of approximately 151 and 136 kDa. 相似文献
9.
10.
Cruz-García C Murray AE Klappenbach JA Stewart V Tiedje JM 《Journal of bacteriology》2007,189(2):656-662
Anaerobic cultures of Shewanella oneidensis MR-1 grown with nitrate as the sole electron acceptor exhibited sequential reduction of nitrate to nitrite and then to ammonium. Little dinitrogen and nitrous oxide were detected, and no growth occurred on nitrous oxide. A mutant with the napA gene encoding periplasmic nitrate reductase deleted could not respire or assimilate nitrate and did not express nitrate reductase activity, confirming that the NapA enzyme is the sole nitrate reductase. Hence, S. oneidensis MR-1 conducts respiratory nitrate ammonification, also termed dissimilatory nitrate reduction to ammonium, but not respiratory denitrification. 相似文献
11.
Yinjie J. Tang Judy S. Hwang David E. Wemmer Jay D. Keasling 《Applied microbiology》2007,73(3):718-729
The central metabolic fluxes of Shewanella oneidensis MR-1 were examined under carbon-limited (aerobic) and oxygen-limited (microaerobic) chemostat conditions, using 13C-labeled lactate as the sole carbon source. The carbon labeling patterns of key amino acids in biomass were probed using both gas chromatography-mass spectrometry (GC-MS) and 13C nuclear magnetic resonance (NMR). Based on the genome annotation, a metabolic pathway model was constructed to quantify the central metabolic flux distributions. The model showed that the tricarboxylic acid (TCA) cycle is the major carbon metabolism route under both conditions. The Entner-Doudoroff and pentose phosphate pathways were utilized primarily for biomass synthesis (with a flux below 5% of the lactate uptake rate). The anaplerotic reactions (pyruvate to malate and oxaloacetate to phosphoenolpyruvate) and the glyoxylate shunt were active. Under carbon-limited conditions, a substantial amount (9% of the lactate uptake rate) of carbon entered the highly reversible serine metabolic pathway. Under microaerobic conditions, fluxes through the TCA cycle decreased and acetate production increased compared to what was found for carbon-limited conditions, and the flux from glyoxylate to glycine (serine-glyoxylate aminotransferase) became measurable. Although the flux distributions under aerobic, microaerobic, and shake flask culture conditions were different, the relative flux ratios for some central metabolic reactions did not differ significantly (in particular, between the shake flask and aerobic-chemostat groups). Hence, the central metabolism of S. oneidensis appears to be robust to environmental changes. Our study also demonstrates the merit of coupling GC-MS with 13C NMR for metabolic flux analysis to reduce the use of 13C-labeled substrates and to obtain more-accurate flux values. 相似文献
12.
13.
The central metabolic fluxes of Shewanella oneidensis MR-1 were examined under carbon-limited (aerobic) and oxygen-limited (microaerobic) chemostat conditions, using 13C-labeled lactate as the sole carbon source. The carbon labeling patterns of key amino acids in biomass were probed using both gas chromatography-mass spectrometry (GC-MS) and 13C nuclear magnetic resonance (NMR). Based on the genome annotation, a metabolic pathway model was constructed to quantify the central metabolic flux distributions. The model showed that the tricarboxylic acid (TCA) cycle is the major carbon metabolism route under both conditions. The Entner-Doudoroff and pentose phosphate pathways were utilized primarily for biomass synthesis (with a flux below 5% of the lactate uptake rate). The anaplerotic reactions (pyruvate to malate and oxaloacetate to phosphoenolpyruvate) and the glyoxylate shunt were active. Under carbon-limited conditions, a substantial amount (9% of the lactate uptake rate) of carbon entered the highly reversible serine metabolic pathway. Under microaerobic conditions, fluxes through the TCA cycle decreased and acetate production increased compared to what was found for carbon-limited conditions, and the flux from glyoxylate to glycine (serine-glyoxylate aminotransferase) became measurable. Although the flux distributions under aerobic, microaerobic, and shake flask culture conditions were different, the relative flux ratios for some central metabolic reactions did not differ significantly (in particular, between the shake flask and aerobic-chemostat groups). Hence, the central metabolism of S. oneidensis appears to be robust to environmental changes. Our study also demonstrates the merit of coupling GC-MS with 13C NMR for metabolic flux analysis to reduce the use of 13C-labeled substrates and to obtain more-accurate flux values. 相似文献
14.
Shewanella oneidensis MR-1 has conventionally been considered unable to use glucose as a carbon substrate for growth. The genome sequence of S. oneidensis MR-1 however suggests the ability to use glucose. Here, we demonstrate that during initial glucose exposure, S. oneidensis MR-1 quickly and frequently gains the ability to utilize glucose as a sole carbon source, in contrast to wild-type S. oneidensis, which cannot immediately use glucose as a sole carbon substrate. High-performance liquid chromatography and (14)C glucose tracer studies confirm the disappearance in cultures and assimilation and respiration, respectively, of glucose. The relatively short time frame with which S. oneidensis MR-1 gained the ability to use glucose raises interesting ecological implications. 相似文献
15.
16.
Gödeke J Heun M Bubendorfer S Paul K Thormann KM 《Applied and environmental microbiology》2011,77(15):5342-5351
The dissimilatory iron-reducing bacterium Shewanella oneidensis MR-1 is capable of using extracellular DNA (eDNA) as the sole source of carbon, phosphorus, and nitrogen. In addition, we recently demonstrated that S. oneidensis MR-1 requires eDNA as a structural component during all stages of biofilm formation. In this study, we characterize the roles of two Shewanella extracellular endonucleases, ExeS and ExeM. While ExeS is likely secreted into the medium, ExeM is predicted to remain associated with the cell envelope. Both exeM and exeS are highly expressed under phosphate-limited conditions. Mutants lacking exeS and/or exeM exhibit decreased eDNA degradation; however, the capability of S. oneidensis MR-1 to use DNA as the sole source of phosphorus is only affected in mutants lacking exeM. Neither of the two endonucleases alleviates toxic effects of increased eDNA concentrations. The deletion of exeM and/or exeS significantly affects biofilm formation of S. oneidensis MR-1 under static conditions, and expression of exeM and exeS drastically increases during static biofilm formation. Under hydrodynamic conditions, a deletion of exeM leads to altered biofilms that consist of densely packed structures which are covered by a thick layer of eDNA. Based on these results, we hypothesize that a major role of ExeS and, in particular, ExeM of S. oneidensis MR-1, is to degrade eDNA as a matrix component during biofilm formation to improve nutrient supply and to enable detachment. 相似文献
17.
Shewanella oneidensis MR-1 is capable of forming highly structured surface-attached communities. By DNase I treatment, we demonstrated that extracellular DNA (eDNA) serves as a structural component in all stages of biofilm formation under static and hydrodynamic conditions. We determined whether eDNA is released through cell lysis mediated by the three prophages LambdaSo, MuSo1 and MuSo2 that are harbored in the genome of S. oneidensis MR-1. Mutant analyses and infection studies revealed that all three prophages may individually lead to cell lysis. However, only LambdaSo and MuSo2 form infectious phage particles. Phage release and cell lysis already occur during early stages of static incubation. A mutant devoid of the prophages was significantly less prone to lysis in pure culture. In addition, the phage-less mutant was severely impaired in biofilm formation through all stages of development, and three-dimensional growth occurred independently of eDNA as a structural component. Thus, we suggest that in S. oneidensis MR-1 prophage-mediated lysis results in the release of crucial biofilm-promoting factors, in particular eDNA. 相似文献
18.
Thormann KM Saville RM Shukla S Pelletier DA Spormann AM 《Journal of bacteriology》2004,186(23):8096-8104
Shewanella oneidensis MR-1 is a facultative Fe(III)- and Mn(IV)-reducing microorganism and serves as a model for studying microbially induced dissolution of Fe or Mn oxide minerals as well as biogeochemical cycles. In soil and sediment environments, S. oneidensis biofilms form on mineral surfaces and are critical for mediating the metabolic interaction between this microbe and insoluble metal oxide phases. In order to develop an understanding of the molecular basis of biofilm formation, we investigated S. oneidensis biofilms developing on glass surfaces in a hydrodynamic flow chamber system. After initial attachment, growth of microcolonies and lateral spreading of biofilm cells on the surface occurred simultaneously within the first 24 h. Once surface coverage was almost complete, biofilm development proceeded with extensive vertical growth, resulting in formation of towering structures giving rise to pronounced three-dimensional architecture. Biofilm development was found to be dependent on the nutrient conditions, suggesting a metabolic control. In global transposon mutagenesis, 173 insertion mutants out of 15,000 mutants screened were identified carrying defects in initial attachment and/or early stages in biofilm formation. Seventy-one of those mutants exhibited a nonswimming phenotype, suggesting a role of swimming motility or motility elements in biofilm formation. Disruption mutations in motility genes (flhB, fliK, and pomA), however, did not affect initial attachment but affected progression of biofilm development into pronounced three-dimensional architecture. In contrast, mutants defective in mannose-sensitive hemagglutinin type IV pilus biosynthesis and in pilus retraction (pilT) showed severe defects in adhesion to abiotic surfaces and biofilm formation, respectively. The results provide a basis for understanding microbe-mineral interactions in natural environments. 相似文献
19.
Jeon Jong-Min Song Hun-Suk Lee Doo-Geun Hong Ju Won Hong Yoon Gi Moon Yu-Mi Bhatia Shashi Kant Yoon Jeong-Jun Kim Wooseong Yang Yung-Hun 《Bioprocess and biosystems engineering》2018,41(8):1195-1204
Bioprocess and Biosystems Engineering - n-Butanol is considered as the next-generation biofuel, because its physiochemical properties are very similar to fossil fuels and it could be produced by... 相似文献