共查询到20条相似文献,搜索用时 0 毫秒
1.
Individuals within any species exhibit differences in size, developmental state, or spatial location. These differences coupled with environmental fluctuations in demographic rates can have subtle effects on population persistence and species coexistence. To understand these effects, we provide a general theory for coexistence of structured, interacting species living in a stochastic environment. The theory is applicable to nonlinear, multi species matrix models with stochastically varying parameters. The theory relies on long-term growth rates of species corresponding to the dominant Lyapunov exponents of random matrix products. Our coexistence criterion requires that a convex combination of these long-term growth rates is positive with probability one whenever one or more species are at low density. When this condition holds, the community is stochastically persistent: the fraction of time that a species density goes below \(\delta >0\) approaches zero as \(\delta \) approaches zero. Applications to predator-prey interactions in an autocorrelated environment, a stochastic LPA model, and spatial lottery models are provided. These applications demonstrate that positive autocorrelations in temporal fluctuations can disrupt predator-prey coexistence, fluctuations in log-fecundity can facilitate persistence in structured populations, and long-lived, relatively sedentary competing populations are likely to coexist in spatially and temporally heterogenous environments. 相似文献
2.
Neubert MG Kot M Lewis MA 《Proceedings. Biological sciences / The Royal Society》2000,267(1453):1603-1610
Biological invasions are increasingly frequent and have dramatic ecological and economic consequences. A key to coping with invasive species is our ability to predict their rates of spread. Traditional models of biological invasions assume that the environment is temporally constant. We examine the consequences for invasion speed of periodic and stochastic fluctuations in population growth rates and in dispersal distributions. 相似文献
3.
Populations with high mutation rates (mutator clones) are being found in increasing numbers of species, and a clear link is being established between the presence of mutator clones and drug resistance. Mutator clones exist despite the fact that in a constant environment most mutations are deleterious, with the spontaneous mutation rate generally held at a low value. This implies that mutator clones have an important role in the adaptation of organisms to changing environments. Our study examines how mutator dynamics vary according to the frequency of environmental fluctuations. Although recent studies have considered a single environmental switch, here we investigate mutator dynamics in a regularly varying environment, seeking to mimic conditions present, for example, under certain drug or pesticide regimes. Our model provides four significant new insights. First, the results demonstrate that mutators are most prevalent under intermediate rates of environmental change. When the environment oscillates more rapidly, mutators are unable to provide sufficient adaptability to keep pace with the frequent changes in selection pressure and, instead, a population of 'environmental generalists' dominates. Second, our findings reveal that mutator dynamics may be complex, exhibiting limit cycles and chaos. Third, we demonstrate that when each beneficial mutation provides a greater gain in fitness, mutators achieve higher densities in more rapidly fluctuating environments. Fourth, we find that mutators of intermediate strength reach higher densities than very weak or strong mutators. 相似文献
4.
Stochastic gene expression in fluctuating environments 总被引:14,自引:0,他引:14
Stochastic mechanisms can cause a group of isogenic bacteria, each subject to identical environmental conditions, to nevertheless exhibit diverse patterns of gene expression. The resulting phenotypic subpopulations will typically have distinct growth rates. This behavior has been observed in several contexts, including sugar metabolism and pili phase variation. Under fixed environmental conditions, the net growth rate of the population is maximized when all cells are of the fastest growing phenotype, so it is unclear what fitness advantage is conferred by population heterogeneity. However, unlike ideal laboratory conditions, natural environments tend to fluctuate, either periodically or randomly. Here we use a stochastic population model to show that, during growth in such fluctuating environments, a dynamically heterogenous bacterial population can sometimes achieve a higher net growth rate than a homogenous one. By using stochastic mechanisms to sample several distinct phenotypes, the bacteria are able to anticipate and take advantage of sudden changes in their environment. However, this heterogeneity is beneficial only if the bacterial response rate is sufficiently low. Our results could be useful in the design of artificial evolution experiments and in the optimization of fermentation processes. 相似文献
5.
In this paper deterministic growth laws of a logistic-like type are initially introduced. The growth equations are expressed by first order differential equations containing a third order nonlinear term. Such equations are then parameterized in a way to allow for random fluctuations of the intrinsic fertility and of the environmental carrying capacity, thus leading to diffusion processes of new types. Their transition p.d.f. and asymptotic moments are then obtained and a detailed study of the extinction problem is performed within the framework of the first passage time problem through arbitrarily fixed threshold values. Some statistically significant quantities, such as the mean time necessary for the process to attain an assigned state, are obtained in closed form. The behavior of the diffusion processes here derived is finally compared with that of the well known diffusion processes obtained by parameterizing logistic and Gompertz growth equations.Work supported in part by the Group for Mathematical Information Sciences (GNIM) of the National Research Council and by Progetto Finalizzato Sofmat, Contract No. 82.00845.97 相似文献
6.
Martino Bardi 《Journal of mathematical biology》1982,12(1):127-140
A class of ordinary or integrodifferential equations describing predator-prey dynamics is considered under the assumption that the coefficients are periodic functions of time. This class is characterized by the logistic behaviour of the prey in the absence of predators and it includes the Leslie model. We show that there exists a periodic solution provided that the average of the predator's intrinsic rate of increase is greater than a critical value. We use well-known results in bifurcation theory for nonlinear eigenvalue problems, as well as an extension to the case of non-globally defined operators of some recent results on the global nature of branches of solutions. 相似文献
7.
8.
Stabilising selection in constant and fluctuating environments 总被引:2,自引:0,他引:2
9.
Growing evidence suggests that temporally fluctuating environments are important in maintaining variation both within and between species. To date, however, studies of genetic variation within a population have been largely conducted by evolutionary biologists (particularly population geneticists), while population and community ecologists have concentrated more on diversity at the species level. Despite considerable conceptual overlap, the commonalities and differences of these two alternative paradigms have yet to come under close scrutiny. Here, we review theoretical and empirical studies in population genetics and community ecology focusing on the ‘temporal storage effect’ and synthesise theories of diversity maintenance across different levels of biological organisation. Drawing on Chesson's coexistence theory, we explain how temporally fluctuating environments promote the maintenance of genetic variation and species diversity. We propose a further synthesis of the two disciplines by comparing models employing traditional frequency-dependent dynamics and those adopting density-dependent dynamics. We then address how temporal fluctuations promote genetic and species diversity simultaneously via rapid evolution and eco-evolutionary dynamics. Comparing and synthesising ecological and evolutionary approaches will accelerate our understanding of diversity maintenance in nature. 相似文献
10.
We live in a time where climate models predict future increases in environmental variability and biological invasions are becoming increasingly frequent. A key to developing effective responses to biological invasions in increasingly variable environments will be estimates of their rates of spatial spread and the associated uncertainty of these estimates. Using stochastic, stage-structured, integrodifference equation models, we show analytically that invasion speeds are asymptotically normally distributed with a variance that decreases in time. We apply our methods to a simple juvenile–adult model with stochastic variation in reproduction and an illustrative example with published data for the perennial herb, Calathea ovandensis. These examples buttressed by additional analysis reveal that increased variability in vital rates simultaneously slow down invasions yet generate greater uncertainty about rates of spatial spread. Moreover, while temporal autocorrelations in vital rates inflate variability in invasion speeds, the effect of these autocorrelations on the average invasion speed can be positive or negative depending on life history traits and how well vital rates “remember” the past. 相似文献
11.
The prediction that environmental fluctuations may destabilise populations and yet stabilise aggregate community properties has remained largely untested. We examined population and community stability under constant and fluctuating temperatures in simple planktonic assemblages of differing algal richness. Temperature dependent resource competition produced a highly asymmetric community structure where algal community biomass was dominated by one species. For a given level of species richness, temperature fluctuations induced lower community covariance and thus stabilised community biomass. However, increasing algal species richness increased the variability of population abundance and growth rates, as well as population and community variability. Consumer dynamics were directly destabilised by environmental fluctuations. These results confirm recent theoretical studies suggesting a stabilising effect of environmental fluctuations at the community level. However, they also support the theoretical prediction that increasing species richness may be of limited value for community stability, most especially in asymmetric communities, when competition directly affects population variability. 相似文献
12.
Journal of Mathematical Biology - We study resident-invader dynamics in fluctuating environments when the invader and the resident have close but distinct strategies. First we focus on a class of... 相似文献
13.
Variation is the raw material for evolution. Evolutionary potential is determined by the amount of genetic variation, but evolution can also alter the visibility of genetic variation to natural selection. Fluctuating environments are suggested to maintain genetic variation but they can also affect environmental variance, and thus, the visibility of genetic variation to natural selection. However, experimental studies testing these ideas are relatively scarce. In order to determine differences in evolutionary potential we quantified variance attributable to population, genotype and environment for populations of the bacterium Serratia marcescens. These populations had been experimentally evolved in constant and two fluctuating environments. We found that strains that evolved in fluctuating environments exhibited larger environmental variation suggesting that adaptation to fluctuations has decreased the visibility of genetic variation to selection. 相似文献
14.
Nitrate signaling: adaptation to fluctuating environments 总被引:1,自引:0,他引:1
Gabriel Krouk Nigel M Crawford Gloria M Coruzzi Yi-Fang Tsay 《Current opinion in plant biology》2010,13(3):265-272
15.
We analyze under different environmental conditions the occurrence of bistability, i.e. of two simultaneously stables steady
states, in a biological model system which describes the immunological interactions of neoplastic-target cells and cytotoxic-effector
cells. As a result of environmental fluctuations such complex biological systems may undergo drastic modifications of their
steady state properties. In particular, when the variance of fluctuations increases around a well defined mean value, transition
phenomena appear which are absent in the usual bifurcation diagrams. The properties of the non-fluctuating systems can no
longer be considered as a first approximation of the properties of the real system. Interestingly, in the case of the model,
these transitions correspond to a rejection of tumor cells. 相似文献
16.
Michel Benaïm 《Theoretical population biology》2009,76(1):19-34
Environmental fluctuations often have different impacts on individuals that differ in size, age, or spatial location. To understand how population structure, environmental fluctuations, and density-dependent interactions influence population dynamics, we provide a general theory for persistence for density-dependent matrix models in random environments. For populations with compensating density dependence, exhibiting “bounded” dynamics, and living in a stationary environment, we show that persistence is determined by the stochastic growth rate (alternatively, dominant Lyapunov exponent) when the population is rare. If this stochastic growth rate is negative, then the total population abundance goes to zero with probability one. If this stochastic growth rate is positive, there is a unique positive stationary distribution. Provided there are initially some individuals in the population, the population converges in distribution to this stationary distribution and the empirical measures almost surely converge to the distribution of the stationary distribution. For models with overcompensating density-dependence, weaker results are proven. Methods to estimate stochastic growth rates are presented. To illustrate the utility of these results, applications to unstructured, spatially structured, and stage-structured population models are given. For instance, we show that diffusively coupled sink populations can persist provided that within patch fitness is sufficiently variable in time but not strongly correlated across space. 相似文献
17.
18.
Populations of bacteria often undergo a lag in growth when switching conditions. Because growth lags can be large compared to typical doubling times, variations in growth lag are an important but often overlooked component of bacterial fitness in fluctuating environments. We here explore how growth lag variation is determined for the archetypical switch from glucose to lactose as a carbon source in Escherichia coli. First, we show that single-cell lags are bimodally distributed and controlled by a single-molecule trigger. That is, gene expression noise causes the population before the switch to divide into subpopulations with zero and nonzero lac operon expression. While “sensorless” cells with zero preexisting lac expression at the switch have long lags because they are unable to sense the lactose signal, any nonzero lac operon expression suffices to ensure a short lag. Second, we show that the growth lag at the population level depends crucially on the fraction of sensorless cells and that this fraction in turn depends sensitively on the growth condition before the switch. Consequently, even small changes in basal expression can significantly affect the fraction of sensorless cells, thereby population lags and fitness under switching conditions, and may thus be subject to significant natural selection. Indeed, we show that condition-dependent population lags vary across wild E. coli isolates. Since many sensory genes are naturally low expressed in conditions where their inducer is not present, bimodal responses due to subpopulations of sensorless cells may be a general mechanism inducing phenotypic heterogeneity and controlling population lags in switching environments. This mechanism also illustrates how gene expression noise can turn even a simple sensory gene circuit into a bet hedging module and underlines the profound role of gene expression noise in regulatory responses.Is ignorance bliss for some bacterial cells? Single-cell analysis of the archetypical switch from glucose to lactose as a carbon source in E. coli shows that bacteria can exhibit stochastic bimodal responses to external stimuli because the corresponding sensory circuit is so lowly expressed that some cells are effectively blind to the stimulus. 相似文献
19.
Bacteria spend most of their lifetime in non-growing states which allow them to survive extended periods of stress and starvation. When environments improve, they must quickly resume growth to maximize their share of limited nutrients. Cells with higher stress resistance often survive longer stress durations at the cost of needing more time to resume growth, a strong disadvantage in competitive environments. Here we analyze the basis of optimal strategies that microorganisms can use to cope with this tradeoff. We explicitly show that the prototypical inverse relation between stress resistance and growth rate can explain much of the different types of behavior observed in stressed microbial populations. Using analytical mathematical methods, we determine the environmental parameters that decide whether cells should remain vegetative upon stress exposure, downregulate their metabolism to an intermediate optimum level, or become dormant. We find that cell-cell variability, or intercellular noise, is consistently beneficial in the presence of extreme environmental fluctuations, and that it provides an efficient population-level mechanism for adaption in a deteriorating environment. Our results reveal key novel aspects of responsive phenotype switching and its role as an adaptive strategy in changing environments. 相似文献
20.
John M. McNamara 《Evolutionary ecology》1995,9(2):185-203
Summary I consider a general model of a fluctuating environment in which the environmental state each year is drawn at random from some given distribution. Each year organisms must choose what action to perform before the environmental state for that year is known. There is no interaction with kin. In this scenario, natural selection will tend to produce organisms which maximize their geometric mean fitness. In this paper I introduce the idea of the profile of a strategy. This function quantifies how the strategy peforms for each environmental state. I show that there is a unique profile such that a strategy is optimal if and only if it has this profile. I then give a characterization of the optimal profile which generalizes previous work by others in this area. The characterization of the optimal profile has a game theoretical interpretation. Motivated by this I introduce a game in which individuals play the field in a constant environment. This game may be interpreted as a cooperative game between kin. The key result of this paper shows that a strategy maximizes geometric mean fitness in the original fluctuating environment problem if and only if it is an evolutionarily stable strategy of the deterministic environment game. It is well known that an optimal strategy in a fluctuating environment may be mixed, involving adaptive coin-flipping. Others have previously noted that this may result in some individuals sacrificing individual reproductive success for the good of the genotype. My analysis shows that one may regain the concept of individual optimization if the quantity maximized is suitably defined. Under an optimal strategy every action taken maximizes the expected number of offspring produced, where this expectation is not calculated using the true distribution of environmental states, but a distribution modified to take account of the actions of kin. 相似文献