共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Zhongqi Ge Devi Nair Xiaoyan Guan Neha Rastogi Michael A. Freitas Mark R. Parthun 《Molecular and cellular biology》2013,33(16):3286-3298
The best-characterized acetylation of newly synthesized histone H4 is the diacetylation of the NH2-terminal tail on lysines 5 and 12. Despite its evolutionary conservation, this pattern of modification has not been shown to be essential for either viability or chromatin assembly in any model organism. We demonstrate that mutations in histone H4 lysines 5 and 12 in yeast confer hypersensitivity to replication stress and DNA-damaging agents when combined with mutations in histone H4 lysine 91, which has also been found to be a site of acetylation on soluble histone H4. In addition, these mutations confer a dramatic decrease in cell viability when combined with mutations in histone H3 lysine 56. We also show that mutation of the sites of acetylation on newly synthesized histone H4 results in defects in the reassembly of chromatin structure that accompanies the repair of HO-mediated double-strand breaks. This defect is not due to a decrease in the level of histone H3 lysine 56 acetylation. Intriguingly, mutations that alter the sites of newly synthesized histone H4 acetylation display a marked decrease in levels of phosphorylated H2A (γ-H2AX) in chromatin surrounding the double-strand break. These results indicate that the sites of acetylation on newly synthesized histones H3 and H4 can function in nonoverlapping ways that are required for chromatin assembly, viability, and DNA damage response signaling. 相似文献
3.
4.
5.
6.
De Novo Messenger RNA and Protein Synthesis Are Required for Phytoalexin-mediated Disease Resistance in Soybean Hypocotyls 总被引:5,自引:4,他引:1 下载免费PDF全文
Actinomycin D inhibited the synthesis of poly(A)-containing messenger RNA in healthy soybean (Glycine max [L.] Merr. cv. Harosoy 63) hypocotyls and in hypocotyls inoculated with the pathogenic fungus Phytophthora megasperma var. sojae A. A. Hildb., but had little effect on protein synthesis within 6 hours. Blasticidin S, conversely, inhibited protein synthesis in the hypocotyls without exhibiting significant effects on messenger RNA synthesis. The normal cultivar-specific resistance of the Harosoy 63 soybean hypocotyls to the fungus was completely diminished by actinomycin D or blasticidin S. The fungus grew as well in hypocotyls treated with either inhibitor as it did in the near isogenic susceptible cultivar Harosoy, and production of the phytoalexin glyceollin was concomitantly reduced. The effects of actinomcyin D and blasticidin S were pronounced when the treatments were made at the time of fungus inoculation or within 2 to 4 hours after inoculation, but not after longer times. These results indicated that the normal expression of resistance to the fungus and production of glyceollin both required de novo messenger RNA and protein synthesis early after infection. Furthermore, actinomycin D and blasticidin S also were effective in suppressing resistance expression and glyceollin production in soybean hypocotyls when inoculated with various Phytophthora species that were normally nonpathogenic to the plants. This indicated that the mechanism of general resistance to these normally nonpathogenic fungi also involves de novo messenger RNA and protein synthesis and production of glyceollin. 相似文献
7.
8.
9.
Andra Li Yaping Yu Sheng-Chun Lee Toyotaka Ishibashi Susan P. Lees-Miller Juan Ausió 《The Journal of biological chemistry》2010,285(23):17778-17788
Phosphorylation of the C-terminal end of histone H2A.X is the most characterized histone post-translational modification in DNA double-stranded breaks (DSB). DNA-dependent protein kinase (DNA-PK) is one of the three phosphatidylinositol 3 kinase-like family of kinase members that is known to phosphorylate histone H2A.X during DNA DSB repair. There is a growing body of evidence supporting a role for histone acetylation in DNA DSB repair, but the mechanism or the causative relation remains largely unknown. Using bacterially expressed recombinant mutants and stably and transiently transfected cell lines, we find that DNA-PK can phosphorylate Thr-136 in addition to Ser-139 both in vitro and in vivo. Furthermore, the phosphorylation reaction is not inhibited by the presence of H1, which in itself is a substrate of the reaction. We also show that, in contrast to previous reports, the ability of the enzyme to phosphorylate these residues is not affected by the extent of acetylation of the core histones. In vitro assembled nucleosomes and HeLa S3 native oligonucleosomes consisting of non-acetylated and acetylated histones are equally phosphorylated by DNA-PK. We demonstrate that the apparent differences in the extent of phosphorylation previously observed can be accounted for by the differential chromatin solubility under the MgCl2 concentrations required for the phosphorylation reaction in vitro. Finally, we show that although H2A.X does not affect nucleosome conformation, it has a de-stabilizing effect that is enhanced by the DNA-PK-mediated phosphorylation and results in an impaired histone H1 binding. 相似文献
10.
11.
12.
I-Chiao Lee Iris I. van Swam Satoru Tomita Pierre Morsomme Thomas Rolain Pascal Hols Michiel Kleerebezem Peter A. Bron 《Journal of bacteriology》2014,196(9):1671-1682
Acm2, the major autolysin of Lactobacillus plantarum WCFS1, was recently found to be O-glycosylated with N-acetylhexosamine, likely N-acetylglucosamine (GlcNAc). In this study, we set out to identify the glycosylation machinery by employing a comparative genomics approach to identify Gtf1 homologues, which are involved in fimbria-associated protein 1 (Fap1) glycosylation in Streptococcus parasanguinis. This in silico approach resulted in the identification of 6 candidate L. plantarum WCFS1 genes with significant homology to Gtf1, namely, tagE1 to tagE6. These candidate genes were targeted by systematic gene deletion, followed by assessment of the consequences on glycosylation of Acm2. We observed a changed mobility of Acm2 on SDS-PAGE in the tagE5E6 deletion strain, while deletion of other tagE genes resulted in Acm2 mobility comparable to that of the wild type. Subsequent mass spectrometry analysis of excised and in-gel-digested Acm2 confirmed the loss of glycosylation on Acm2 in the tagE5E6 deletion mutant, whereas a lectin blot using GlcNAc-specific succinylated wheat germ agglutinin (sWGA) revealed that besides Acm2, tagE5E6 deletion also abolished all but one other sWGA-reactive, protease-sensitive signal. Only complementation of both tagE5 and tagE6 restored those sWGA lectin signals, establishing that TagE5 and TagE6 are both required for the glycosylation of Acm2 as well as the vast majority of other sWGA-reactive proteins. Finally, sWGA lectin blotting experiments using a panel of 8 other L. plantarum strains revealed that protein glycosylation is a common feature in L. plantarum strains. With the establishment of these enzymes as protein glycosyltransferases, we propose to rename TagE5 and TagE6 as GtfA and GtfB, respectively. 相似文献
13.
14.
15.
Zhenyu Zhang Qiuying Yang Guangyan Sun She Chen Qun He Shaojie Li Yi Liu 《The Journal of biological chemistry》2014,289(13):9365-9371
Quelling and DNA damage-induced small RNA (qiRNA) production are RNA interference (RNAi)-related phenomenon from repetitive genomic loci in Neurospora. We have recently proposed that homologous recombination from repetitive DNA loci allows the RNAi pathway to recognize repetitive DNA to produce small RNA. However, the mechanistic detail of this pathway remains largely unclear. By systematically screening the Neurospora knock-out library, we identified RTT109 as a novel component required for small RNA production. RTT109 is a histone acetyltransferase for histone H3 lysine 56 (H3K56) and H3K56 acetylation is essential for the small RNA biogenesis pathway. Furthermore, we showed that RTT109 is required for homologous recombination and H3K56Ac is enriched around double strand break, which overlaps with RAD51 binding. Taken together, our results suggest that H3K56 acetylation is required for small RNA production through its role in homologous recombination. 相似文献
16.
17.
Interferon (IFN) responses are critical for controlling herpes simplex virus 1 (HSV-1). The importance of neuronal IFN signaling in controlling acute and latent HSV-1 infection remains unclear. Compartmentalized neuron cultures revealed that mature sensory neurons respond to IFNβ at both the axon and cell body through distinct mechanisms, resulting in control of HSV-1. Mice specifically lacking neural IFN signaling succumbed rapidly to HSV-1 corneal infection, demonstrating that IFN responses of the immune system and non-neuronal tissues are insufficient to confer survival following virus challenge. Furthermore, neurovirulence was restored to an HSV strain lacking the IFN-modulating gene, γ34.5, despite its expected attenuation in peripheral tissues. These studies define a crucial role for neuronal IFN signaling for protection against HSV-1 pathogenesis and replication, and they provide a novel framework to enhance our understanding of the interface between host innate immunity and neurotropic pathogens. 相似文献
18.
Sara C. Nilsson Izabela Nita Lisa M?nsson Tom W. L. Groeneveld Leendert A. Trouw Bruno O. Villoutreix Anna M. Blom 《The Journal of biological chemistry》2010,285(9):6235-6245
The central complement inhibitor factor I (FI) degrades activated complement factors C4b and C3b in the presence of cofactors such as C4b-binding protein, factor H, complement receptor 1, and membrane cofactor protein. FI is a serine protease composed of two chains. The light chain comprises the serine protease domain, whereas the heavy chain contains several domains; that is, the FI and membrane attack complex domain (FIMAC), CD5, low density lipoprotein receptor 1 (LDLr1) and LDLr2 domains. To understand better how FI acts as a complement inhibitor, we used homology-based models of FI domains to predict potential binding sites. Specific amino acids were then mutated to yield 16 well expressed mutants, which were then purified from media of eukaryotic cells for functional analyses. The Michaelis constant (Km) of all FI mutants toward a small substrate was not altered, whereas some mutants showed increased maximum initial velocity (Vmax). All the mutations in the FIMAC domain affected the ability of FI to degrade C4b and C3b irrespective of the cofactor used, whereas only some mutations in the CD5 and LDLr1/2 domains had a similar effect. These same mutants also showed impaired binding to C3met. In conclusion, the FIMAC domain appears to harbor the main binding sites important for the ability of FI to degrade C4b and C3b. 相似文献
19.
Herpes simplex virus 2 (HSV-2) 0ΔNLS is a live HSV-2 ICP0
- mutant vaccine strain that is profoundly attenuated in vivo due to its interferon-hypersensitivity. Recipients of the HSV-2 0ΔNLS vaccine are resistant to high-dose HSV-2 challenge as evidenced by profound reductions in challenge virus spread, shedding, disease and mortality. In the current study, we investigated the requirements for HSV-2 0ΔNLS vaccine-induced protection. Studies using (UV)-inactivated HSV-2 0ΔNLS revealed that self-limited replication of the attenuated virus was required for effective protection from vaginal or ocular HSV-2 challenge. Diminished antibody responses in recipients of the UV-killed HSV-2 vaccine suggested that antibodies might be playing a critical role in early protection. This hypothesis was investigated in B-cell-deficient μMT mice. Vaccination with live HSV-2 0ΔNLS induced equivalent CD8+ T cell responses in wild-type and μMT mice. Vaccinated μMT mice shed ~40-fold more infectious HSV-2 at 24 hours post-challenge relative to vaccinated wild-type (B-cell+) mice, and most vaccinated μMT mice eventually succumbed to a slowly progressing HSV-2 challenge. Importantly, passive transfer of HSV-2 antiserum restored full protection to HSV-2 0ΔNLS-vaccinated μMT mice. The results demonstrate that B cells are required for complete vaccine-induced protection against HSV-2, and indicate that virus-specific antibodies are the dominant mediators of early vaccine-induced protection against HSV-2. 相似文献
20.
Rafael Rodriguez-Mercado Gregory D Ford Zhenfeng Xu Edmundo N Kraiselburd Melween I Martinez Vesna A Eterovi? Edgar Colon Idia V Rodriguez Peter Portilla Pedro A Ferchmin Lynette Gierbolini Maria Rodriguez-Carrasquillo Michael D Powell John VK Pulliam Casey O McCraw Alicia Gates Byron D Ford 《Comparative medicine》2012,62(5):427-438
The goal of this study was to characterize acute neuronal injury in a novel nonhuman primate (NHP) ischemic stroke model by using multiple outcome measures. Silk sutures were inserted into the M1 segment of the middle cerebral artery of rhesus macaques to achieve permanent occlusion of the vessel. The sutures were introduced via the femoral artery by using endovascular microcatheterization techniques. Within hours after middle cerebral artery occlusion (MCAO), infarction was detectable by using diffusion-weighted MRI imaging. The infarcts expanded by 24 h after MCAO and then were detectable on T2-weighted images. The infarcts seen by MRI were consistent with neuronal injury demonstrated histologically. Neurobehavioral function after MCAO was determined by using 2 neurologic testing scales. Neurologic assessments indicated that impairment after ischemia was limited to motor function in the contralateral arm; other neurologic and behavioral parameters were largely unaffected. We also used microarrays to examine gene expression profiles in peripheral blood mononuclear cells after MCAO-induced ischemia. Several genes were altered in a time-dependent manner after MCAO, suggesting that this ischemia model may be suitable for identifying blood biomarkers associated with the presence and severity of ischemia. This NHP stroke model likely will facilitate the elucidation of mechanisms associated with acute neuronal injury after ischemia. In addition, the ability to identify candidate blood biomarkers in NHP after ischemia may prompt the development of new strategies for the diagnosis and treatment of ischemic stroke in humans.Abbreviations: MCAO, middle cerebral artery occlusion; NHP, nonhuman primate; PBMC, peripheral blood mononuclear cellsStroke is a debilitating neurologic condition, and little progress has been made in the development of neuroprotective treatments for acute stroke. The Stroke Therapy Academic Industry Roundtable (STAIR) report suggested that preclinical candidates for stroke therapy should be validated by testing in large animals with similarities to humans, such as nonhuman primates (NHP).26 NHP stroke models have been developed in several species, including rhesus monkeys, marmosets, and baboons, by using a variety of techniques for middle cerebral artery occlusion (MCAO).4,10,12,13,14,25,32 The rhesus macaque is ideal for stroke studies because of its structural similarities to human brain. The rhesus brain is gyrencephalic, which makes it preferable to those of lissencephalic primates (for example, marmosets) and is functionally similar to human brain.6 In addition, the immunologic profile of rhesus macaques is similar to that of humans; therefore these animals are the preferred model for the study of immune responses to infectious diseases such as HIV/SIV, Dengue virus, and others.17,23,30In addition to their use for neuroprotection assessment, NHP stroke models can facilitate efforts to develop diagnostic tools for identifying and treating stroke symptoms. The use of genomics in peripheral blood cells has been shown to be an excellent method to identify candidate biomarkers and cellular mechanisms associated with stroke.28,29 Blood biomarkers can be used to rapidly determine the occurrence, timing, subtype, and severity of stroke.11,15 One possible reason for the lack of viable stroke biomarkers may be the research models used to search for these markers. Although rodent stroke models have yielded a wealth of information on the mechanisms associated with brain ischemia, the findings have not translated well to human clinical trials.26 Recent studies in human patients showed promising results when genomic tools have been used to screen for novel stroke biomarkers.3,16,27 However, validation of human studies is limited by the need for large data sets in light of heterogeneity in stroke onset, subtype, comorbidities, and other factors. In addition, it is also impossible to know the exact time of stroke onset in most patients.Here we characterized acute neuronal injury in a novel, minimally invasive permanent ischemic stroke model involving rhesus macaques. Using endovascular catheterization techniques, we introduced silk sutures into the M1 segment of the middle cerebral artery and permanently occluded it. This procedure reliably produced infarcts that could be measured by MRI of the macaque brains during the acute phase period. The procedure resulted in discrete and limited neurobehavioral deficits, indicating the potential of this stroke model for chronic neuroprotection studies in the future. In addition, we used microarrays to identify blood genomic profiles that were altered in a time-dependent manner after ischemia. These studies characterize a preclinical model that is suitable for elucidating the mechanisms associated with cerebral ischemia and that may aid in identifying strategies for the diagnosis and treatment of stroke in humans. 相似文献