首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

The mechanisms of kidney aging are not yet clear. Studies have shown that immunological inflammation is related to kidney aging. Toll-like receptors (TLRs) are one of the receptor types of the body''s innate immune system. The function of the TLR system and the mechanisms by which it functions in renal aging remain unclear. In the present study, we, for the first time, systematically investigated the role of the TLR system and the inflammation responses activated by TLRs during kidney aging.

Methods

We used western blot and immunohistochemistry to systematically analyze the changes in the expression and activation of the endogenous TLR ligands HSP70 and HMGB1, the TLRs (TLR1–TLR11), their downstream signaling pathway molecules MyD88 and Phospho-IRF-3, and the NF-κB signaling pathway molecules Phospho-IKKβ, Phospho-IκBα (NF-κB inhibition factor α), NF-κBp65, and Phospho-NF-κBp65 (activated NF-κB p65) in the kidneys of 3 months old (youth group), 12 months old (middle age group), and 24 months old (elderly group) rats. We used RT-qPCR to detect the mRNA expression changes of the proinflammatory cytokines CCL3, CCL4, CCL5, CD80, TNF-α, and IL-12b in the rat renal tissues of the various age groups.

Results

We found that during kidney aging, the HSP70 and HMGB1 expression levels were significantly increased, and the expression levels of TLR1, 2, 3, 4, 5, and 11 and their downstream signaling pathway molecules MyD88 and Phospho-IRF-3 were markedly elevated. Further studies have shown that in the aging kidneys, the expression levels of the NF-κB signaling pathway molecules Phospho-IKKβ, Phospho-IκBα, NF-κBp65, and Phospho-NF-κBp65 were obviously increased, and those of the proinflammatory cytokines CCL3, CCL4, CCL5, CD80, TNF-α, and IL-12b were significantly upregulated.

Conclusions

These results showed that the TLR system might play an important role during the kidney aging process maybe by activating the NF-κB signaling pathway and promoting the high expression of inflammation factors.  相似文献   

2.

Background

Anti-inflammation via inhibition of NF-κB pathways in hepatic stellate cells (HSCs) is one therapeutic approach to hepatic fibrosis. Tanshinone IIA (C19H18O3, Tan IIA) is a lipophilic diterpene isolated from Salvia miltiorrhiza Bunge, with reported anti-inflammatory activity. We tested whether Tan IIA could inhibit HSC activation.

Materials and Methods

The cell line of rat hepatic stellate cells (HSC-T6) was stimulated with lipopolysaccharide (LPS) (100 ng/ml). Cytotoxicity was assessed by MTT assay. HSC-T6 cells were pretreated with Tan IIA (1, 3 and 10 µM), then induced by LPS (100 ng/ml). NF-κB activity was evaluated by the luciferase reporter gene assay. Western blotting analysis was performed to measure NF-κB-p65, and phosphorylations of MAPKs (ERK, JNK, p38). Cell chemotaxis was assessed by both wound-healing assay and trans-well invasion assay. Quantitative real-time PCR was used to detect gene expression in HSC-T6 cells.

Results

All concentrations of drugs showed no cytotoxicity against HSC-T6 cells. LPS stimulated NF-κB luciferase activities, nuclear translocation of NF-κB-p65, and phosphorylations of ERK, JNK and p38, all of which were suppressed by Tan IIA. In addition, Tan IIA significantly inhibited LPS-induced HSCs chemotaxis, in both wound-healing and trans-well invasion assays. Moreover, Tan IIA attenuated LPS-induced mRNA expressions of CCL2, CCL3, CCL5, IL-1β, TNF-α, IL-6, ICAM-1, iNOS, and α-SMA in HSC-T6 cells.

Conclusion

Our results demonstrated that Tan IIA decreased LPS-induced HSC activation.  相似文献   

3.

Background

Previous studies have implicated NF-κB signaling in both cutaneous development and oncogenesis. However, these studies have been limited in part by the lethality that results from extreme over- or under-expression of NF-κB in available mouse models. Even cre-driven tissue specific expression of transgenes, or targeted deletion of NF-κB can cause cell death. Therefore, the present study was undertaken to evaluate a novel mouse model of enhanced NF-κB activity in the skin.

Methods

A knock-in homologous recombination technique was utilized to develop a mouse model (referred to as PD mice) with increased NF-κB activity.

Results

The data show that increased NF-κB activity leads to hyperproliferation and dysplasia of the mouse epidermis. Chemical carcinogenesis in the context of enhanced NF-κB activity promotes the development of keratoacanthomata.

Conclusion

Our findings support an important role for NF-κB in keratinocyte dysplasia. We have found that enhanced NF-κB activity renders keratinocytes susceptible to hyperproliferation and keratoacanthoma (KA) development but is not sufficient for transformation and SCC development. We therefore propose that NF-κB activation in the absence of additional oncogenic events can promote TNF-dependent, actinic keratosis-like dysplasia and TNF-independent, KAs upon chemical carcinogensis. These studies suggest that resolution of KA cannot occur when NF-κB activation is constitutively enforced.  相似文献   

4.
5.

Background

Up-regulation and association of nuclear factor kappa B (NF-κB) with carcinogenesis and tumor progression has been reported in several malignancies. In the current study, expression of NF-κB in cholangiocarcinoma (CCA) patient tissues and its clinical significance were determined. The possibility of using NF-κB as the therapeutic target of CCA was demonstrated.

Methodology

Expression of NF-κB in CCA patient tissues was determined using immunohistochemistry. Dehydroxymethylepoxyquinomicin (DHMEQ), a specific NF-κB inhibitor, was used to inhibit NF-κB action. Cell growth was determined using an MTT assay, and cell apoptosis was shown by DNA fragmentation, flow cytometry and immunocytofluorescent staining. Effects of DHMEQ on growth and apoptosis were demonstrated in CCA cell lines and CCA-inoculated mice. DHMEQ-induced apoptosis in patient tissues using a histoculture drug response assay was quantified by TUNEL assay.

Principal Findings

Normal bile duct epithelia rarely expressed NF-κB (subunits p50, p52 and p65), whereas all CCA patient tissues (n  =  48) over-expressed all NF-κB subunits. Inhibiting NF-κB action by DHMEQ significantly inhibited growth of human CCA cell lines in a dose- and time-dependent manner. DHMEQ increased cell apoptosis by decreasing the anti-apoptotic protein expressions–Bcl-2, XIAP–and activating caspase pathway. DHMEQ effectively reduced tumor size in CCA-inoculated mice and induced cell apoptosis in primary histocultures of CCA patient tissues.

Conclusions

NF-κB was over-expressed in CCA tissues. Inhibition of NF-κB action significantly reduced cell growth and enhanced cell apoptosis. This study highlights NF-κB as a molecular target for CCA therapy.  相似文献   

6.

Objective

Inflammation and fibrosis are essential promoters in the pathogenesis of diabetic nephropathy (DN) in type 2 diabetes. The present study examined the anti-inflammation and anti-fibrosis effect of Tangshen Formula (TSF), a traditional Chinese medicine, on DN.

Research Design and Methods

Protective role of TSF in DN was examined in a rat model of type 2 DN that was established by high-fat diet-fed and low-dose-streptozotocin injection. TSF was suspended in 0.5% CMC-Na solution and delivered by oral gavage at a dosage of 1.67g/Kg body weight/day. The therapeutic effects and mechanisms of TSF on diabetic kidney injury were examined.

Results

We found that TSF treatment for 20 weeks attenuated DN by significantly inhibiting urinary excretion of albumin and renal histological injuries. These beneficial effects were associated with an inactivation of NF-κB signaling, thereby blocking the upregulation of pro-inflammatory cytokines (IL-1β, TNFα), chemokine (MCP-1), and macrophage infiltration in the TSF-treated rats with type 2 DN. In addition, TSF treatment also inactivated TGF-β/Smad3 signaling and therefore suppressed renal fibrosis including expressions of fibronectin, collagen I, and collagen IV. Further studies revealed that the inhibitory effect of TSF on TGF-β/Smad3 and NF-κB signaling in DN was associated with inhibition of Smurf2-dependent ubiquitin degradation of Smad7.

Conclusions

The present study reveals that TSF has therapeutic potential for type 2 DN in rats. Blockade of NF-κB-driven renal inflammation and TGF-β/Smad3-mediated renal fibrosis by preventing the Smurf2-mediated Smad7 degradation pathway may be mechanisms through which TSF inhibits type 2 DN.  相似文献   

7.

Background

We have previously reported that low concentrations of cigarette smoke extract induce DNA damage without leading to apoptosis or necrosis in human bronchial epithelial cells (HBECs), and that IL-6/STAT3 signaling contributes to the cell survival. Since NF-κB is also involved in regulating apoptosis and cell survival, the current study was designed to investigate the role of NF-κB in mediating cell survival in response to cigarette smoke exposure in HBECs.

Methods

Both the pharmacologic inhibitor of NF-κB, curcumin, and RNA interference targeting p65 were used to block NF-κB signaling in HBECs. Apoptosis and cell survival were then assessed by various methods including COMET assay, LIVE/DEAD Cytotoxicity/Viability assay and colony formation assay.

Results

Cigarette smoke extract (CSE) caused DNA damage and cell cycle arrest in S phase without leading to apoptosis in HBECs as evidenced by TUNEL assay, COMET assay and DNA content assay. CSE stimulated NF-κB -DNA binding activity and up-regulated Bcl-XL protein in HBECs. Inhibition of NF-κB by the pharmacologic inhibitor curcumin (20 μM) or suppression of p65 by siRNA resulted in a significant increase in cell death in response to cigarette smoke exposure. Furthermore, cells lacking p65 were incapable of forming cellular colonies when these cells were exposed to CSE, while they behaved normally in the regular culture medium.

Conclusion

The current study demonstrates that CSE activates NF-κB and up-regulates Bcl-XL through NF-kB activation in HBECs, and that CSE induces cell death in cells lacking p65. These results suggest that activation of NF-κB regulates cell survival following DNA damage by cigarette smoke in human bronchial epithelial cells.  相似文献   

8.

Background

High-tidal-volume mechanical ventilation used in patients with acute lung injury (ALI) can induce the release of inflammatory cytokines, as macrophage inflammatory protein-2 (MIP-2), recruitment of neutrophils, and disruption of alveolar epithelial and endothelial barriers. Induced pluripotent stem cells (iPSCs) have been shown to improve ALI in mice, but the mechanisms regulating the interactions between mechanical ventilation and iPSCs are not fully elucidated. Nuclear factor kappa B (NF-κB) and NF-κB repressing factor (NKRF) have been proposed to modulate the neutrophil activation involved in ALI. Thus, we hypothesized intravenous injection of iPSCs or iPSC-derived conditioned medium (iPSC-CM) would decrease high-tidal-volume ventilation-induced neutrophil infiltration, oxidative stress, and MIP-2 production through NF-κB/NKRF pathways.

Methods

Male C57BL/6 mice, aged between 6 and 8 weeks, weighing between 20 and 25 g, were exposed to high-tidal-volume (30 ml/kg) mechanical ventilation with room air for 1 to 4 h after 5×107 cells/kg mouse iPSCs or iPSC-CM administration. Nonventilated mice were used as control groups.

Results

High-tidal-volume mechanical ventilation induced the increases of integration of iPSCs into the injured lungs of mice, microvascular permeability, neutrophil infiltration, malondialdehyde, MIP-2 production, and NF-κB and NKRF activation. Lung injury indices including inflammation, lung edema, ultrastructure pathologic changes and functional gas exchange impairment induced by mechanical ventilation were attenuated with administration of iPSCs or iPSC-CM, which was mimicked by pharmacological inhibition of NF-κB activity with SN50 or NKRF expression with NKRF short interfering RNA.

Conclusions

Our data suggest that iPSC-based therapy attenuates high-tidal-volume mechanical ventilation-induced lung injury, at least partly, through inhibition of NF-κB/NKRF pathways. Notably, the conditioned medium of iPSCs revealed beneficial effects equal to those of iPSCs.  相似文献   

9.
10.

Background

Nuclear factor kappa B (NF-κB) has been implicated in anesthetic preconditioning (APC) induced protection against anoxia and reoxygenation (A/R) injury. The authors hypothesized that desflurane preconditioning would induce NF-κB oscillation and prevent endothelial cells apoptosis.

Methods

A human umbilical vein endothelial cells (HUVECs) A/R injury model was used. A 30 minute desflurane treatment was initiated before anoxia. NF-κB inhibitor BAY11-7082 was administered in some experiments before desflurane preconditioning. Cells apoptosis was analyzed by flow cytometry using annexin V–fluorescein isothiocyanate staining and cell viability was evaluated by modified tertrozalium salt (MTT) assay. The cellular superoxide dismutases (SOD) activitiy were tested by water-soluble tetrazolium salt (WST-1) assay. NF-κB p65 subunit nuclear translocation was detected by immunofluorescence staining. Expression of inhibitor of NF-κB-α (IκBα), NF-κB p65 and cellular inhibitor of apoptosis 1 (c-IAP1), B-cell leukemia/lymphoma 2 (Bcl-2), cysteine containing aspartate specific protease 3 (caspases-3) and second mitochondrial-derived activator of caspase (SMAC/DIABLO) were determined by western blot.

Results

Desflurane preconditioning caused phosphorylation and nuclear translocation of NF-κB before anoxia, on the contrary, induced the synthesis of IκBα and inhibition of NF-κB after reoxygenation. Desflurane preconditioning up-regulated the expression of c-IAP1 and Bcl-2, blocked the cleavage of caspase-3 and reduced SMAC release, and decreased the cell death of HUVECs after A/R. The protective effect was abolished by BAY11-7082 administered before desflurane.

Conclusions

The results demonstrated that desflurane activated NF-κB during the preconditioning period and inhibited excessive activation of NF-κB in reperfusion. And the oscillation of NF-κB induced by desflurane preconditioning finally up-regulated antiapoptotic proteins expression and protected endothelial cells against A/R.  相似文献   

11.
12.
13.
14.
15.

Background/Objective

Respiratory infections including atypical bacteria Mycoplasma pneumoniae (Mp) contribute to the pathobiology of asthma and chronic obstructive pulmonary disease (COPD). Mp infection mainly targets airway epithelium and activates various signaling pathways such as nuclear factor κB (NF-κB). We have shown that short palate, lung, and nasal epithelium clone 1 (SPLUNC1) serves as a novel host defense protein and is up-regulated upon Mp infection through NF-κB activation in cultured human and mouse primary airway epithelial cells. However, the in vivo role of airway epithelial NF-κB activation in host defense against Mp infection has not been investigated. In the current study, we investigated the effects of in vivo airway epithelial NF-κB activation on lung Mp clearance and its association with airway epithelial SPLUNC1 expression.

Methodology/Main Results

Non-antimicrobial tetracycline analog 9-t-butyl doxycycline (9-TB) was initially optimized in mouse primary tracheal epithelial cell culture, and then utilized to induce in vivo airway epithelial specific NF-κB activation in conditional NF-κB transgenic mice (CC10-CAIKKβ) with or without Mp infection. Lung Mp load and inflammation were evaluated, and airway epithelial SPLUNC1 protein was examined by immunohistochemistry. We found that 9-TB treatment in NF-κB transgene positive (Tg+), but not transgene negative (Tg−) mice significantly reduced lung Mp load. Moreover, 9-TB increased airway epithelial SPLUNC1 protein expression in NF-κB Tg+ mice.

Conclusion

By using the non-antimicrobial 9-TB, our study demonstrates that in vivo airway epithelial NF-κB activation promotes lung bacterial clearance, which is accompanied by increased epithelial SPLUNC1 expression.  相似文献   

16.
17.

Background

Hantaan virus (HTNV) infection causes a severe form of HFRS(hemorrhagic fever with renal syndrome)in Asia. Although HTNV has been isolated for nearly forty years, the pathogenesis of HFRS is still unknown, and little is known regarding the signaling pathway that is activated by the virus.

Methodology/Principal Findings

Cardamonin was selected as a NF-κB inhibitor, and indirect immunofluorescence assays were used to detect the effect of cardamonin on HTNV-infected HUVECs. The effect of cardamonin on the HTNV-induced phosphorylation of Akt and DNA-binding activity of NF-κB were determined using Western blot analysis and electrophoretic mobility shift assays (EMSAs), respectively. Then, flow cytometric and quantitative real-time PCR analyses were performed to quantify the expression levels of the adhesion molecules ICAM-1 and VCAM-1, and the concentrations of IL-6, IL-8, and CCL5 in HUVEC supernatants were examined using ELISA. The results showed that cardamonin did not effect the proliferation of HUVECs or the replication of HTNV in HUVECs. Instead, cardamonin inhibited the phosphorylation of Akt and nuclear transduction of NF-κB and further reduced the expression of the adhesion molecules ICAM-1 and VCAM-1 in HTNV-infected HUVECs. Cardamonin also inhibited the secretion of IL-6 and CCL5, but not IL-8.

Conclusion/Significance

HTNV replication may not be dependent upon the ability of the virus to activate NF-κB in HUVECs. The Akt/NF-κB pathways may be involved in the pathogenesis of HFRS; therefore, cardamonin may serve as a potential beneficial agent for HFRS therapy.  相似文献   

18.
19.
20.

Background

Bradykinin (BK) induces angiogenesis by promoting vessel permeability, growth and remodeling. This study aimed to demonstrate that the B2R antagonist, fasitibant, inhibits the BK pro-angiogenic effects.

Methodology

We assesed the ability of fasibitant to antagonize the BK stimulation of cultured human cells (HUVEC) and circulating pro-angiogenic cells (PACs), in producing cell permeability (paracellular flux), migration and pseocapillary formation. The latter parameter was studied in vitro (matrigel assay) and in vivo in mice (matrigel plug) and in rat model of experimental osteoarthritis (OA). We also evaluated NF-κB activation in cultured cells by measuring its nuclear translocation and its downstream effectors such as the proangiogenic ciclooxygenase-2 (COX-2), prostaglandin E-2 and vascular endothelial growth factor (VEGF).

Principal findings

HUVEC, exposed to BK (1–10 µM), showed increased permeability, disassembly of adherens and tight-junction, increased cell migration, and pseudocapillaries formation. We observed a significant increase of vessel density in the matrigel assay in mice and in rats OA model. Importantly, B2R stimulation elicited, both in HUVEC and PACs, NF-κB activation, leading to COX-2 overexpression, enhanced prostaglandin E-2 production. and VEGF output. The BK/NF-κB axis, and the ensuing amplification of inflammatory/angiogenic responses were fully prevented by fasitibant as well as by IKK VII, an NF-κB. Inhibitor.

Conclusion

This work illustrates the role of the endothelium in the inflammation provoked by the BK/NF-κB axis. It also demonstates that B2R blockade by the antaogonist fasibitant, abolishes both the initial stimulus and its amplification, strongly attenuating the propagation of inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号