首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Immunodominance is a common phenomenon observed in multiple epitopes immune systems. Previous studies hypothesize that the competition among CD8+ T cell responses against different epitopes can be used to explain immunodominance. This paper proposes a mathematical model that describes the dynamics of CD8+ T cells primed by antigen-presenting dendritic cells (DCs) in the lymph nodes, and shows that the overall avidity of the interactions between peptide-specific T cells and cognate antigen-bearing DCs may determine the immunodominance. The model suggests the probability that a peptide-specific T cell be immunodominant is proportional to (1) the cognate T cell receptor (TCR) affinity, (2) the number of complexes of cognate peptide and major histocompatibility complex (pMHC) per DC, and (3) the half-life of cognate peptide-specific pMHC. The model predicts a threshold density of pMHC complexes for T cell activation. These observations from the mathematical model are consistent with experimental studies in the open literature. For DC-based vaccine design, the model suggests a strategy of immunotherapy based on the injection of cognate antigen-pulsed DCs.  相似文献   

2.
For development of an effective T cell-based AIDS vaccine, it is critical to define the antigens that elicit the most potent responses. Recent studies have suggested that Gag-specific and possibly Vif/Nef-specific CD8+ T cells can be important in control of the AIDS virus. Here, we tested whether induction of these CD8+ T cells by prophylactic vaccination can result in control of simian immunodeficiency virus (SIV) replication in Burmese rhesus macaques sharing the major histocompatibility complex class I (MHC-I) haplotype 90-010-Ie associated with dominant Nef-specific CD8+ T-cell responses. In the first group vaccinated with Gag-expressing vectors (n = 5 animals), three animals that showed efficient Gag-specific CD8+ T-cell responses in the acute phase postchallenge controlled SIV replication. In the second group vaccinated with Vif- and Nef-expressing vectors (n = 6 animals), three animals that elicited Vif-specific CD8+ T-cell responses in the acute phase showed SIV control, whereas the remaining three with Nef-specific but not Vif-specific CD8+ T-cell responses failed to control SIV replication. Analysis of 18 animals, consisting of seven unvaccinated noncontrollers and the 11 vaccinees described above, revealed that the sum of Gag- and Vif-specific CD8+ T-cell frequencies in the acute phase was inversely correlated with plasma viral loads in the chronic phase. Our results suggest that replication of the AIDS virus can be controlled by vaccine-induced subdominant Gag/Vif epitope-specific CD8+ T cells, providing a rationale for the induction of Gag- and/or Vif-specific CD8+ T-cell responses by prophylactic AIDS vaccines.  相似文献   

3.
Dominant epitope-specific CD8(+) T-lymphocyte responses play a central role in controlling viral spread. We explored the basis for the development of this focused immune response in simian immunodeficiency virus (SIV)- and simian-human immunodeficiency virus (SHIV)-infected rhesus monkeys through the use of two dominant (p11C and p199RY) and two subdominant (p68A and p56A) epitopes. Using real-time PCR to quantitate T-cell receptor (TCR) variable region beta (Vbeta) family usage, we show that CD8(+) T-lymphocyte populations specific for dominant epitopes are characterized by a diverse Vbeta repertoire, whereas those specific for subdominant epitopes employ a dramatically more focused Vbeta repertoire. We also demonstrate that dominant epitope-specific CD8(+) T lymphocytes employ TCRs with multiple CDR3 lengths, whereas subdominant epitope-specific cells employ TCRs with a more restricted CDR3 length. Thus, the relative dominance of an epitope-specific CD8(+) T-lymphocyte response reflects the clonal diversity of that response. These findings suggest that the limited clonal repertoire of subdominant epitope-specific CD8(+) T-lymphocyte populations may limit the ability of these epitope-specific T-lymphocyte populations to expand and therefore limit the ability of these cell populations to contribute to the control of viral replication.  相似文献   

4.
The TCR repertoire of an immunodominant CD8+ T lymphocyte population   总被引:3,自引:0,他引:3  
The TCR repertoire of an epitope-specific CD8(+) T cell population remains poorly characterized. To determine the breadth of the TCR repertoire of a CD8(+) T cell population that recognizes a dominant epitope of the AIDS virus, the CD8(+) T cells recognizing the tetrameric Mamu-A*01/p11C(,CM) complex were isolated from simian immunodeficiency virus (SIV)-infected Mamu-A*01(+) rhesus monkeys. This CD8(+) T cell population exhibited selected usage of TCR V beta families and complementarity-determining region 3 (CDR3) segments. Although the epitope-specific CD8(+) T cell response was clearly polyclonal, a dominance of selected V beta(+) cell subpopulations and clones was seen in the TCR repertoire. Interestingly, some of the selected V beta(+) cell subpopulations and clones maintained their dominance in the TCR repertoire over time after infection with SIV of macaques. Other V beta(+) cell subpopulations declined over time in their relative representation and were replaced by newly evolving clones that became dominant. The present study provides molecular evidence indicating that the TCR repertoire shaped by a single viral epitope is dominated at any point in time by selected V beta(+) cell subpopulations and clones and suggests that dominant V beta(+) cell subpopulations and clones can either be stable or evolve during a chronic infection.  相似文献   

5.
Activated epitope-specific CD8+ T cells after virus infection can be organized into hierarchies (immunodominance), based on their ability to focus the response on few viral determinants. The mechanisms responsible for immunodominance can be multifactorial, with CD8+ T cells precursor frequencies recently highlighted as a key regulator. Employing the LCMV infection model, we demonstrate that the hierarchies were altered when comparing different sites of infection but only at high viral doses. These findings have significant implications when investigating immunity to viruses with different replication abilities that may override the influence of T cell precursor frequencies.  相似文献   

6.
Most lymphocytes of the T cell lineage develop along the CD4/CD8 pathway and express antigen receptors on their surfaces consisting of clonotypic αβ chains associated with invariant CD3-γδε components and ζ chains, collectively referred to as the T cell antigen receptor complex (TCR). Expression of the TCR complex is dynamically regulated during T cell development, with immature CD4+CD8+ thymocytes expressing only 10% of the number of αβ TCR complexes on their surfaces expressed by mature CD4+ and CD8+ T cells. Recent evidence demonstrates that low surface TCR density on CD4+CD8+ thymocytes results from the limited survival of a single TCR component within the ER, the TCRα chain, which has a half life of only 15 minutes in immature thymocytes, compared to >75 minutes in mature T cells. Instability of TCRα proteins in immature CD4+CD8+ thymocytes represents a novel mechanism by which expression of the multisubunit TCR complex is quantitatively regulated during T cell development. In the current review we discuss our recent findings concerning the assembly, intracellular transport, and expression of αβ TCR complexes in CD4+CD8+ thymocytes and comment on the functional significance of TCRα instability during T cell development.  相似文献   

7.
Negative selection is designed to purge the immune system of high-avidity, self-reactive T cells and thereby protect the host from overt autoimmunity. In this in vivo viral infection model, we show that there is a previously unappreciated dichotomy involved in negative selection in which high-avidity CD8(+) T cells specific for a dominant epitope are eliminated, whereas T cells specific for a subdominant epitope on the same protein preferentially escape deletion. Although this resulted in significant skewing of immunodominance and a substantial depletion of the most promiscuous T cells, thymic and/or peripheral deletion of high-avidity CD8(+) T cells was not accompanied by any major change in the TCR V beta gene family usage or an absolute deletion of a single preferred complementarity-determining region 3 length polymorphism. This suggests that negative selection allows high-avidity CD8(+) T cells specific for subdominant or cryptic epitopes to persist while effectively deleting high-avidity T cells specific for dominant epitopes. By allowing the escape of subdominant T cells, this process still preserves a relatively broad peripheral TCR repertoire that can actively participate in antiviral and/or autoreactive immune responses.  相似文献   

8.
CD8+ T cells play an important role in protection against both acute and persistent viral infections, and new vaccines that induce CD8+ T cell immunity are currently needed. Here, we show that lymphocytic choriomeningitis virus (LCMV)-specific CD8+ T cells can be generated in response to a nonreplicating H2O2-inactivated whole-virus vaccine (H2O2-LCMV). Vaccine-induced CD8+ T cell responses exhibited an increased ability to produce multiple cytokines at early time points following immunization compared to infection-induced responses. Vaccination with H2O2-LCMV induced the expansion of a narrow subset of the antigen-specific CD8+ T cells induced by LCMV strain Arm infection, resulting in a distinct immunodominance hierarchy. Acute LCMV infection stimulated immunodominance patterns that shifted over time or after secondary infection, whereas vaccine-generated immunodominance profiles remained remarkably stable even following subsequent viral infection. Vaccine-induced CD8+ T cell populations expanded sharply in response to challenge and were then maintained at high levels, with responses to individual epitopes occupying up to 40% of the CD8+ T cell compartment at 35 days after challenge. H2O2-LCMV vaccination protected animals against challenge with chronic LCMV clone 13, and protection was mediated by CD8+ T cells. These results indicate that vaccination with an H2O2-inactivated whole-virus vaccine induces LCMV-specific CD8+ T cells with unique functional characteristics and provides a useful model for studying CD8+ T cells elicited in the absence of active viral infection.  相似文献   

9.
10.
Generating broad cellular immune responses against a diversity of viral epitopes is a major goal of current vaccine strategies for human immunodeficiency virus type 1 (HIV-1) and other pathogens. Virus-specific CD8(+) T-lymphocyte responses, however, are often highly focused on a very limited number of immunodominant epitopes. For an HIV-1 vaccine, the breadth of CD8(+) T-lymphocyte responses may prove to be critical as a result of the need to cover a wide diversity of viral isolates in the population and to limit viral escape from dominant epitope-specific T lymphocytes. Here we show that epitope modification strategies can alter CD8(+) T-lymphocyte epitope immunodominance hierarchies elicited by a DNA vaccine in mice. Mice immunized with a DNA vaccine expressing simian immunodeficiency virus Gag lacking the dominant D(b)-restricted AL11 epitope generated a marked and durable augmentation of responses specific for the subdominant D(b)-restricted KV9 epitope. Moreover, anatomic separation strategies and heterologous prime-boost regimens generated codominant responses against both epitopes. These data demonstrate that dominant epitopes can dramatically suppress the immunogenicity of subdominant epitopes in the context of gene-based vaccines and that epitope modification strategies can be utilized to enhance responses to subdominant epitopes.  相似文献   

11.
Dengue virus (DENV) is the principal arthropod-borne viral pathogen afflicting human populations. While repertoires of antibodies to DENV have been linked to protection or enhanced infection, the role of T lymphocytes in these processes remains poorly defined. This study provides a comprehensive overview of CD4+ and CD8+ T cell epitope reactivities against the DENV 2 proteome in adult patients experiencing secondary DENV infection. Dengue virus-specific T cell responses directed against an overlapping 15mer peptide library spanning the DENV 2 proteome were analyzed ex vivo by enzyme-linked immunosorbent spot assay, and recognition of individual peptides was further characterized in specific T cell lines. Thirty novel T cell epitopes were identified, 9 of which are CD4+ and 21 are CD8+ T cell epitopes. We observe that whereas CD8+ T cell epitopes preferentially target nonstructural proteins (NS3 and NS5), CD4+ epitopes are skewed toward recognition of viral components that are also targeted by B lymphocytes (envelope, capsid, and NS1). Consistently, a large proportion of dengue virus-specific CD4+ T cells have phenotypic characteristics of circulating follicular helper T cells (CXCR5 expression and production of interleukin-21 or gamma interferon), suggesting that they are interacting with B cells in vivo. This study shows that during a dengue virus infection, the protein targets of human CD4+ and CD8+ T cells are largely distinct, thus highlighting key differences in the immunodominance of DENV proteins for these two cell types. This has important implications for our understanding of how the two arms of the human adaptive immune system are differentially targeted and employed as part of our response to DENV infection.  相似文献   

12.
Reactive oxygen intermediates (ROI) generated in response to receptor stimulation play an important role in cellular responses. However, the effect of increased H2O2 on an antigen-specific CD8+ T cell response was unknown. Following T cell receptor (TCR) stimulation, the expression and oxidation of peroxiredoxin II (PrdxII), a critical antioxidant enzyme, increased in CD8+ T cells. Deletion of PrdxII increased ROI, S phase entry, division, and death during in vitro division. During primary acute viral and bacterial infection, the number of effector CD8+ T cells in PrdxII-deficient mice was increased, while the number of memory cells were similar to those of the wild-type cells. Adoptive transfer of P14 TCR transgenic cells demonstrated that the increased expansion of effector cells was T cell autonomous. After rechallenge, effector CD8+ T cells in mutant animals were more skewed to memory phenotype than cells from wild-type mice, resulting in a larger secondary memory CD8+ T cell pool. During chronic viral infection, increased antigen-specific CD8+ T cells accumulated in the spleens of PrdxII mutant mice, causing mortality. These results demonstrate that PrdxII controls effector CD8+ T cell expansion, secondary memory generation, and immunopathology.  相似文献   

13.

Background

Hantaan virus (HTNV) infection in humans is a serious public health concern in Asia. A potent T cell activation peptide vaccine from HTNV structure protein represents a promising immunotherapy for disease control. However, the T cell epitopes of the HTNV restricted by the HLA alleles and the role of epitope-specific T cell response after HTNV infection remain largely unexplored.

Methodology/Principal Findings

Five well-conserved novel CD8+ T-cell epitopes of the HTNV nucleoprotein restricted by the most popular HLA alleles in Chinese Han population were defined with interferon-γ enzyme-linked immunospot assay in 37 patients infected with HTNV during hospitalization. Two epitopes aa129–aa137 and aa131–aa139 restricted by HLA-A2 and B35, respectively, were selected to evaluate the epitope-specific CD8+ T-cell response. HLA-peptide pentamer complex staining showed that the frequency of single epitope-specific CD8+ T cell could be detected in patients (95% confidence interval for aa129–aa137: 0.080%–0.208%; for aa131–aa139: 0.030%–0.094%). The frequency of epitope-specific pentamer+ CD8+ T-cell response was much higher in mild/moderate patients than in severe/critical ones at the acute stage of the disease. Moreover, the frequency of epitope-specific CD8+ T cells at acute stage was inversely associated with the peak level of serum creatinine and was positively associated with the nadir platelet counts during the hospitalization. The intracellular cytokine staining and the proliferation assay showed that the effective epitope-specific CD8+ T cells were characterized with the production of interferon-γ, expression of CD69 and the strong capacity of proliferation.

Conclusion/Significance

The novel HLA class I restricted HTNV nucleoprotein epitopes-specific CD8+ T-cell responses would be closely related with the progression and the severity of the disease, which could provide the first step toward effective peptide vaccine development against HTNV infection in humans.  相似文献   

14.
Cytotoxic T cells play a critical role in the control of HIV and the progression of infected individuals to AIDS. 2B4 (CD244) is a member of the SLAM family of receptors that regulate lymphocyte development and function. The expression of 2B4 on CD8+ T cells was shown to increase during AIDS disease progression. However, the functional role of 2B4+ CD8+ T cells against HIV infection is not known. Here, we have examined the functional role of 2B4+ CD8+ T cells during and after stimulation with HLA B14 or B27 restricted HIV epitopes. Interestingly, IFN-γ secretion and cytotoxic activity of 2B4+ CD8+ T cells stimulated with HIV peptides were significantly decreased when compared to influenza peptide stimulated 2B4+ CD8+ T cells. The expression of the signaling adaptor molecule SAP was downregulated in 2B4+ CD8+ T cells upon HIV peptide stimulation. These results suggest that 2B4+ CD8+ T cells play an inhibitory role against constrained HIV epitopes underlying the inability to control the virus during disease progression.  相似文献   

15.
High frequencies of EBV-specific CD8(+) T cells have been detected during acute EBV infection, yet persistent infection inevitably results. To address this issue, we characterized the phenotype and function of epitope-specific CD8(+) T cell populations from presentation with acute through latent infection. Considerable phenotypic and functional heterogeneity within, as well as between, two different epitope-specific populations was observed over time following acute infection. B7 EBV-encoded nuclear Ag (EBNA)-3A-specific CD8(+) T cells expressed only CD45RO from acute through latent EBV infection. A2 BMLF-1-specific CD8(+) T cells expressed CD45RO during acute infection and either CD45RA or CD45RO during latent EBV infection. This difference in CD45 isoform expression between the two epitope-specific populations did not translate into differences in perforin content, the ability to produce IFN-gamma, or the ability to proliferate in response to Ag in vitro. In individuals with latent EBV infection, the frequencies of A2 BMLF-1- or B7 EBNA-3A-specific CD8(+) T cells that expressed CD45RA, CD45RO, CD62 ligand, CCR7, and perforin were stable over time. However, the expression of CD62 ligand and CCR7 was significantly higher among EBNA-3A-specific CD8(+) T cells than among BMLF-1-specific CD8(+) T cells. Further work is necessary to understand how phenotypic and functional differences between EBV epitope-specific CD8(+) T cells are related to the biology of the virus and to the equilibrium between the virus and the host during persistent infection.  相似文献   

16.
17.
HIV infection induces phenotypic and functional changes to CD8+ T cells defined by the coordinated upregulation of a series of negative checkpoint receptors that eventually result in T cell exhaustion and failure to control viral replication. We report that effector CD8+ T cells during HIV infection in blood and SIV infection in lymphoid tissue exhibit higher levels of the negative checkpoint receptor TIGIT. Increased frequencies of TIGIT+ and TIGIT+ PD-1+ CD8+ T cells correlated with parameters of HIV and SIV disease progression. TIGIT remained elevated despite viral suppression in those with either pharmacological antiretroviral control or immunologically in elite controllers. HIV and SIV-specific CD8+ T cells were dysfunctional and expressed high levels of TIGIT and PD-1. Ex-vivo single or combinational antibody blockade of TIGIT and/or PD-L1 restored viral-specific CD8+ T cell effector responses. The frequency of TIGIT+ CD4+ T cells correlated with the CD4+ T cell total HIV DNA. These findings identify TIGIT as a novel marker of dysfunctional HIV-specific T cells and suggest TIGIT along with other checkpoint receptors may be novel curative HIV targets to reverse T cell exhaustion.  相似文献   

18.
Immunodominance is a common feature of Ag-specific CTL responses to infection or vaccines. Understanding the basis of immunodominance is crucial to understanding cellular immunity and viral evasion mechanisms and will provide a rational approach for improving HIV vaccine design. This study was performed comparing CTLs specific for the SIV Gag p11C (dominant) and SIV Pol p68A (subdominant) epitopes that are consistently generated in Mamu-A*01(+) rhesus monkeys exposed to SIV proteins. Additionally, vaccinated monkeys were used to prevent any issues of antigenic variation or dynamic changes in CTL responses by continuous Ag exposure. Analysis of the TCR repertoire revealed the usage of higher numbers of TCR clones by the dominant p11C-specific CTL population. Preferential usage of specific TCRs and the in vitro functional TCR-alpha- and -beta-chain-pairing assay suggests that every peptide/MHC complex may only be recognized by a limited number of unique combinations of alpha- and beta-chain pairs. The wider array of TCR clones used by the dominant p11C-specific CTL population might be explained by the higher probability of generating those specific TCR chain pairs. Our data suggest that Ag-specific naive T cell precursor frequency may be predetermined and that this process dictates immunodominance of SIV-specific CD8(+) T cell responses. These findings will aid in understanding immunodominance and designing new approaches to modulate CTL responses.  相似文献   

19.
Antigen-specific CD8+ T cells play a key role in the host’s antiviral response. T cells recognize viral epitopes via the T cell receptor (TCR), which contains the complementarity-determining region-3 (CDR3), comprising the variable, diversity and joining regions of the TCRβ gene. During chronic simian immunodeficiency virus (SIV) infection of Asian macaque nonhuman primates, tissue-specific clonotypes are identifiable among SIV-specific CD8+ T cells. Here, we sought to determine level of antigen exposure responsible for the tissue-specific clonotypic structure. We examined whether the priming event and/or chronic antigen exposure is response for tissue-specific TCR repertoires. We evaluated the TCR repertoire of SIV-specific CD8+ T cells after acute antigen exposure following inoculation with a SIV DNA vaccine, longitudinally during the acute and chronic phases of SIV, and after administration of antiretrovirals (ARVs). Finally, we assessed the TCR repertoire of cytomegalovirus (CMV)-specific CD8+ T cells to establish if TCR tissue-specificity is shared among viruses that chronically replicate. TCR sequences unique to anatomical sites were identified after acute antigen exposure via vaccination and upon acute SIV infection. Tissue-specific clones also persisted into chronic infection and the clonotypic structure continued to evolve after ARV administration. Finally, tissue-specific clones were also observed in CMV-specific CD8+ T cells. Together, these data suggest that acute antigen priming is sufficient to induce tissue-specific clones and that this clonal hierarchy can persist when antigen loads are naturally or therapeutically reduced, providing mechanistic insight into tissue-residency.  相似文献   

20.
PD-1 expression is generally associated with exhaustion of T cells during chronic viral infections based on the finding that PD-1 expressing cells respond poorly to antigen activation and blockade of PD-1/PD-ligand interaction restores such antigen specific responses in vitro. We tested this hypothesis by examining PD-1 expression on virus-specific CD8 T cells and total T cells in vivo to determine whether PD-1 expression constitutes a reliable marker of immune exhaustion during SIV infection. The expression of PD-1 and Ki67 was monitored longitudinally on T cell subsets in peripheral blood, bone marrow, lymph node and rectal biopsy specimens from rhesus macaques prior to and post infection with pathogenic SIVmac239. During the course of infection, a progressive negative correlation was noted between PD-1 density and Ki67 expression in p11CM+ CD8+ T cells, as seen in other studies. However, for total and memory CD4 and CD8 T cells, a positive correlation was observed between PD-1 and Ki67 expression. Thus, while the levels of non-proliferating PD-1+ p11CM+ CD8 T cells were markedly elevated with progressing infection, such an increase was not seen on total T cells. In addition, total memory PD1+ T cells exhibited higher levels of CCR5 than PD-1 T cells. Interestingly, few PD-1+ CD8+ T cells expressed CCR7 compared to PD-1+ CD4 T cells and PD-1 T cells. In conclusion, overall PD1+ T cells likely represent a particular differentiation stage or trafficking ability rather than exhaustion and in the context of chronic SIV infection, the level of PD-1 expression by T cells does not by itself serve as a reliable marker for immune exhaustion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号