首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Introduction

This study established two-dimensional gel electrophoresis (2-DE) profiles for human well-differentiated laryngeal squamous cell carcinoma tissue and paired normal mucosa epithelia tissue and identified proteins with different expressions. Well-resolved and reproducible 2-DE patterns of well-differentiated laryngeal squamous cell carcinoma and adjacent normal mucosa were obtained.

Results

Thirteen proteins were preliminarily identified, among which ten proteins including cofilin-1, nuclear body protein SP140, GRP94, HSP 90, GSTP1-1, superoxide dismutase [Mn], cyclophilin A, proteasome activator complex subunit 2, apolipoprotein A-I precursor, and CaM-like protein were upregulated and three proteins including fatty acid-binding protein (E-FABP), calgranulin A, and calgranulin B were downregulated in laryngeal cancer tissue. The different expressions of cyclophilin A and MRP8 were confirmed by Western blotting.

Discussion

We first identified 13 proteins that might be associated with the tumorigenesis of the laryngeal squamous cell carcinoma. Some proteins were the products of oncogenes and apoptosis and others were related to signal transduction and immune defense. These extensive protein variations indicated that multiple protein molecules were simultaneously involved in the oncogenesis of laryngeal cancer, which in turn is a basis for the rational designs of diagnostic and therapeutic methods.  相似文献   

2.
大部分食管鳞癌(esophageal squamous cell carcinoma, ESCC)确诊时已发展至中晚期,临床治疗效果差,是导致我国华北地区ESCC死亡率居高不下的主要原因之一.因此,亟需筛查ESCC特异性、敏感性的生物标志物,以期用于ESCC早期诊断、个体化分子靶向治疗和预后评价. 与相对稳定、携带遗传信息的基因组不同,蛋白质组具有时空变化特性,由此构成生命活动复杂性的物质基础.在病理情况下,蛋白质组能够精确反映患病组织器官的功能状态,因此为疾病的监测提供了窗口.本文总结了ESCC蛋白质组研究现状及差异表达的蛋白质谱,并探讨了ESCC候选分子标志物的潜在临床应用价值.  相似文献   

3.
4.
为筛选鼻咽癌的甲基化沉默基因,采用二维凝胶电泳(2-DE)技术分离甲基转移酶抑制剂5-杂氮-2'-脱氧胞苷(5-aza-2-dC)处理与未处理鼻咽癌细胞5-8F的蛋白质,PDquest图像分析软件识别差异蛋白质点,基质辅助激光解吸电离飞行时间质谱(MALDI-TOF-MS)鉴定差异蛋白质.然后采用Western blotting和RT-PCR检测差异蛋白质nm23-H1在药物处理与未处理5.8F细胞中的表达水平,采用甲基化特异性PCR(MS-PCR)检测nm23-H1基因在药物处理与未处理5-8F细胞中的甲基化水平.建立了5-aza-2-dC处理与未处理5.8F细胞蛋白质的2-DE图谱,识别了49个差异表达的蛋白质点,鉴定了33个差异表达的蛋白质,其中包括rim23.H1在内的15个蛋白质在5-aza-2-dC处理后的5-8F细胞中表达上调,而18个蛋白质表达下调.Western blotting和RT-PCR结果显示,nm23-H1在5-aza-2-dC处理5-8F细胞后表达上调,MS-PCR结果显示,在5-aza-2-dC处理5-8F细胞后nm23-H1基因甲基化水平下降,结果证实,nm23-H1基因是5-8F细胞中的甲基化沉默基因.15个5-aza.2-dC处理后表达上调的基因可能是5-8F细胞中的甲基化沉默基因,为筛选鼻咽癌甲基化失活基因提供了科学依据.  相似文献   

5.
Epidermal squamous cell carcinoma is among the most common cancers in humans. These tumors are comprised of phenotypically diverse populations of cells that display varying potential for proliferation and differentiation. An important goal is identifying cells from this population that drive tumor formation. To enrich for tumor-forming cells, cancer cells were grown as spheroids in non-attached conditions. We show that spheroid-selected cells form faster growing and larger tumors in immune-compromised mice as compared to non-selected cells. Moreover, spheroid-selected cells gave rise to tumors following injection of as few as one hundred cells, suggesting these cells have enhanced tumor-forming potential. Cells isolated from spheroid-selected tumors retain an enhanced ability to grow as spheroids when grown in non-attached culture conditions. Thus, these tumor-forming cells retain their phenotype following in vivo passage as tumors. Detailed analysis reveals that spheroid-selected cultures are highly enriched for expression of epidermal stem cell and embryonic stem cell markers, including aldehyde dehydrogenase 1, keratin 15, CD200, keratin 19, Oct4, Bmi-1, Ezh2 and trimethylated histone H3. These studies indicate that a subpopulation of cells that possess stem cell-like properties and express stem cell markers can be derived from human epidermal cancer cells and that these cells display enhanced ability to drive tumor formation.  相似文献   

6.
Oral squamous cell carcinoma (OSCC) is a major health problem worldwide, and patients have a particularly poor 5-year survival rate. Thus, identification of the molecular targets in OSCC and subsequent innovative therapies are greatly needed. Prolonged exposure to alcohol, tobacco, and pathogenic agents are known risk factors and have suggested that chronic inflammation may represent a potential common denominator in the development of OSCC. Microarray analysis of gene expression in OSCC cell lines with high basal NF-κB activity and OSCC patient samples identified dysregulation of many genes involved in inflammation, wound healing, angiogenesis, and growth regulation. In particular IL-8, CCL5, STAT1, and VEGF gene expression was up-regulated in OSCC. Moreover, IL-8 protein levels were significantly higher in OSCC cell lines as compared with normal human oral keratinocytes. Targeting IL-8 expression by siRNA significantly reduced the survival of OSCC cells, indicating that it plays an important role in OSCC development and/or progression. Inhibiting the inflammatory pathway by aspirin and the proteasome/NF-κB pathway by bortezomib resulted in marked reduction in cell viability in OSCC lines. Taken together our studies indicate a strong link between inflammation and OSCC development and reveal IL-8 as a potential mediator. Treatment based on prevention of general inflammation and/or the NF-κB pathway shows promise in OSCCs.  相似文献   

7.
One of the most common cancers worldwide is oral squamous cell carcinoma (OSCC), which is associated with a significant death rate and has been linked to several risk factors. Notably, failure to detect these neoplasms at an early stage represents a fundamental barrier to improving the survival and quality of life of OSCC patients. In the present study, serum samples from OSCC patients (n = 25) and healthy controls (n = 25) were subjected to two-dimensional gel electrophoresis (2-DE) and silver staining in order to identify biomarkers that might allow early diagnosis. In this regard, 2-DE spots corresponding to various up- and down-regulated proteins were sequenced via high-resolution MALDI-TOF mass spectrometry and analyzed using the MASCOT database. We identified the following differentially expressed host-specific proteins within sera from OSCC patients: leucine-rich α2-glycoprotein (LRG), alpha-1-B-glycoprotein (ABG), clusterin (CLU), PRO2044, haptoglobin (HAP), complement C3c (C3), proapolipoprotein A1 (proapo-A1), and retinol-binding protein 4 precursor (RBP4). Moreover, five non-host factors were detected, including bacterial antigens from Acinetobacter lwoffii, Burkholderia multivorans, Myxococcus xanthus, Laribacter hongkongensis, and Streptococcus salivarius. Subsequently, we analyzed the immunogenicity of these proteins using pooled sera from OSCC patients. In this regard, five of these candidate biomarkers were found to be immunoreactive: CLU, HAP, C3, proapo-A1 and RBP4. Taken together, our immunoproteomics approach has identified various serum biomarkers that could facilitate the development of early diagnostic tools for OSCC.  相似文献   

8.

Background

Deletion of 3p is one of the most frequent genetic alterations in esophageal squamous cell carcinoma (ESCC), suggesting the existence of one or more tumor suppressor genes (TSGs) within these regions. In this study, one TSG, CACNA2D3 at 3p21.1, was characterized.

Methods

Expression of CACNA2D3 in ESCCs was tested by quantitative real-time PCR and tissue microarray. The mechanism of CACNA2D3 downregulation was investigated by methylation-specific polymerase chain reaction (MS-PCR). The tumor suppressive function of CACNA2D3 was characterized by both in vitro and in vivo tumorigenic assays, cell migration and invasion assays.

Results

CACNA2D3 was frequently downregulated in ESCCs (24/48, 50%), which was significantly associated with promoter methylation and allele loss (P<0.05). Tissue microarray result showed that downregulation of CACNA2D3 was detected in (127/224, 56.7%) ESCCs, which was significantly associated with lymph node metastasis (P = 0.01), TNM staging (P = 0.003) and poor outcome of ESCC patients (P<0.05). Functional studies demonstrated that CACNA2D3 could inhibit tumorigenicity, cell motility and induce apoptosis. Mechanism study found that CACNA2D3 could arrest cell cycle at G1/S checkpoint by increasing expressions of p21 and p53 and decreasing expression of CDK2. In addition, CACNA2D3 could upregulate intracellular free cytosolic Ca2+ and subsequently induce apoptosis.

Conclusion

CACNA2D3 is a novel TSG responsible to the 3p21 deletion event and plays a critical suppressing role in the development and progression of ESCC.  相似文献   

9.
本文利用先进的生物信息学方法,首次从全基因组水平综合基因表达、甲基化水平和拷贝数变异三类数据,寻找与肺鳞状细胞癌(LUSC)发生和发展密切相关的特征基因,为进一步解释其内在机理、开发新的靶向药物和治疗手段提供更加深入的理论依据.为克服全基因组数据超高维高噪声小样本特性对机器学习算法性能的影响,防止信息饱和现象的干扰,本文创新性地组合应用4种特征基因筛选方法,分别从特异性、相关性、生物学功能和对肿瘤分类模型的贡献等多个方面,通过迭代降维技术递归筛选真正的特征基因.研究中,我们以TCGA(The Cancer Genome Atlas project)数据库中的LUSCⅠ~Ⅲ期病人样本为例,对其基因表达数据(GE)、基因甲基化数据(ME)以及拷贝数变异数据(CNV)进行分析.结果筛选出67个GE特征基因,对3类样本分类的平均准确率达到86.29%,70个ME特征基因,相应的分类准确率为90.92%,31个CNV特征基因,相应的分类准确率为69.16%.KEGG(Kyoto Encyclopedia of Genes and Genomes)和IPA(Ingenuity Pathway Analysis)对上述3类特征基因集在代谢通路水平和基因调控网络水平上的分析,证明了其在调控水平上的密切关系.同时也表明,识别的特征基因与LUSC肿瘤进展之间有着重要的直接关系,这对了解肿瘤机理以及新靶向治疗的发展非常重要.  相似文献   

10.
 为了检测喉鳞状细胞癌相关的基因表达变化特征,筛选与喉癌发生相关的特异基因. 从3名患者体内分别取正常喉上皮组织和喉鳞状细胞癌组织.应用基因芯片技术进行基因表达差异分析及系统聚类分析,并进行半定量RT PCR验证部分基因芯片结果.本实验基因芯片包括7 26条探针,其中,在3对样本中,表达发生显著差异的基因共有94条,有31条上调,63条下调,并且系统聚类分析将正常和癌组织各分为一类,半定量RT-PCR结果与芯片结果一致.实验表明,细胞的代谢、生长、信号传递相关基因(如RAN、PDCD10、zyxin、TACSTD1等)参与了喉癌的发生、发展,并可能扮演了重要角色  相似文献   

11.
By using cDNA microarray analysis, we identified cornulin (CRNN) gene was frequently downregulated in esophageal squamous cell carcinoma (ESCC). In the present study, we investigated the role of CRNN in ESCC development. The results showed that CRNN was frequently downregulated in primary ESCCs in both mRNA level (26/56, 46.4%) and protein level (137/249, 55%), which was significantly associated with lymph node metastases (P=0.027), advanced clinical stage (P=0.039), and overall survival rate (P<0.001). Multivariate analysis indicated that the CRNN downregulation was an independent prognostic factor for ESCC. Functional studies with both in vitro and in vivo assays demonstrated that CRNN had strong tumor suppressive ability in ESCC cells. The tumor-suppressive mechanism of CRNN was associated with its role in cell cycle arrest at G1/S checkpoint by upregulating expressions of P21WAF1/CIP1 and Rb. Silencing CRNN expression by RNA interference could effectively inhibit its tumor suppressive effect. In conclusion, our findings demonstrate that CRNN is a tumor suppressor gene that plays a critical tumor suppressive role in ESCC.  相似文献   

12.
Esophageal squamous cell carcinoma (ESCC) is the predominant pathotype of esophageal carcinoma (EC) in China, especially in Henan province, with poor prognosis and limited 5-year survival rate. Cellular retinoic acid binding protein 2 (CRABP2) is a member of the retinoic acid (RA) and lipocalin/cytosolic fatty-acid binding protein family and plays a completely contrary role in tumorigenesis through the retinoid signaling pathway, depending on the nuclear RA receptors (RAR) and PPARbeta/delta receptors. Presently, the biological role of CRABP2 in the development of ESCC has never been reported. Here, we firstly evaluated the expression of CRABP2 at both mRNA and protein levels and showed that it was remarkably downregulated in clinical ESCC tissues and closely correlated with the occurrence position, pathology, TNM stage, size, infiltration depth and cell differentiation of the tumor. Additionally, the biological function assays demonstrated that CRABP2 acted as a tumor suppressor in esophageal squamous carcinogenesis by significantly inhibiting cell growth, inducing cell apoptosis and blocking cell metastasis both in vitro and in vivo. All in all, our finding simplicate that CRABP2 is possibly an efficient molecular marker for diagnosing and predicting the development of ESCC.  相似文献   

13.
14.
Patients with advanced head and neck squamous cell carcinoma (HNSCC) have a poor prognosis with the currently available therapy, and tumor recurrence is frequently observed. The discovery of specific membrane-associated cancer stem cell (CSC) markers is crucial for the development of novel therapeutic strategies to target these CSCs. To address this issue, we established sphere cultures to enrich CSCs and used them for plasma membrane proteomics to identify specific membrane signatures of the HNSCC spheres. Of a dataset that included a total of 376 identified proteins, 200 were bona fide membrane proteins. Among them, 123 proteins were at least 1.5-fold up- or down-regulated in the spheres relative to the adherent cultures. These proteins included cell adhesion molecules, receptors, and transporter proteins. Some of them play key roles in wnt, integrin, and TGFβ signaling pathways. When we compared our dataset with two published hESC membrane protein signatures, we found 18 proteins common to all three of the databases. CD166 and CD44 were two such proteins. Interestingly, the expression of CD166, rather than that of the well-established HNSCC CSC marker CD44, was significantly related to the malignant behavior of HNSCC. Relative to CD166low HNSCC cells, CD166high HNSCC cells had a greater sphere-formation ability in vitro and tumor formation ability in vivo. Patients whose tumors expressed high levels of CD166 had a significantly poorer clinical outcome than those whose tumors expressed low levels of CD166 (cohort 1: 96 cases, p = 0.040), whereas the level of CD44 expression had only a marginal influence on the clinical outcome of patients with HNSCC (p = 0.078). The level of CD166 expression in HNSCC tumors was also associated with the tumor recurrence rate (cohort 2: 104 cases, p = 0.016). This study demonstrates that CD166 is a valuable cell surface marker for the enrichment of HNSCC stem cells and that plasma membrane proteomics is a promising biological tool for investigating the membrane proteins of CSCs.Head and neck squamous cell carcinoma (HNSCC)1 is the sixth most common cancer worldwide. Despite ongoing improvement in traditional treatments, the long-term survival rate of patients with HNSCC has not significantly improved over the past several decades. More than 60% of patients with advanced tumors or localized lymph node metastases die within five years of their diagnosis (1). Tumor recurrence and resistance to therapy are the major causes of death. Recently, newly recognized cancer stem cells (CSCs) or tumor-initiating cells have been associated in a cause-and-effect manner with tumor recurrence and resistance to therapy. The concept of CSCs was established because of the heterogeneous nature of cancer and suggests that CSCs are a subpopulation of cancer cells with stem-cell-like traits and the source of all cells in the cancer. Conventional cancer therapies such as chemotherapy and radiotherapy may destroy only those cells that form the bulk of the tumor, leaving the CSCs intact and able to give rise to tumor recurrence. Based on this theory, researchers are searching for therapies that would destroy CSCs in the hope of finally curing cancer (2). In order to develop strategies that target CSCs, experimental assays are required to determine how to distinguish CSCs from their progeny. Different methods have been used to isolate CSCs from a range of hematopoietic and solid tumors, and some CSC-specific cell surface markers have been found. These markers are primarily selected from the corresponding normal stem-cell markers based on their heterogeneous expression in the pertinent cancers. Despite some controversy, the CD34+CD38- marker signature was chosen to define the CSCs of leukemia (3), the CD44+CD24- signature was chosen to define breast cancer CSCs (4), and the CD44 marker was chosen to define the CSCs of HNSCC (5). Though membrane proteins represent only one-third of the proteins encoded by the human genome, they represent more than two-thirds of the known protein targets of drugs. These cell surface markers are not only useful for enriching CSCs from different tumors, but also of significant interest for drug discovery.However, as more cell surface markers for different cancers have been identified, conflicting results have been reported regarding the usefulness of some of the markers and the reproducibility of some of the marker profiles (6). Quintana et al. examined the expression of 22 common CSC markers in melanoma and found that none of them were exclusively enriched in tumorigenic cells relative to non-tumorigenic cells derived from melanoma (7). CD133 is a widely accepted cell surface marker for glioblastoma CSCs, but Beier et al. found that some glioblastoma CSCs were CD133- (8). CD44 is a CSC marker that is commonly expressed by different malignancies of hematopoietic and epithelial origin, including HNSCC (5). However, increasing data have demonstrated a high level of expression of CD44 in the great majority of cells in head and neck tissues, including normal mucosa and carcinomas, and its subsequent expression could not be used to distinguish normal from benign or malignant epithelia of the head and neck. These observations suggest the need for a comprehensive investigation and greater understanding of the cell surface molecules of CSCs.Many different “omic” technologies have shown promise as means to identify markers for cancer stem cells and tumors (9). Among them, membrane proteomics can directly detect changes in the cell surface content and provide insights into the post-translational regulation of cell surface functions. Therefore, in this study, we chose to use membrane proteomics both to investigate the cell surface molecules of CSCs that were enriched from the HNSCC cell populations based on their ability to form spheres and to relate their expression to that of stem cell traits. Our results may contribute to further clinical applications of CSCs by providing tools for purifying and identifying CSCs.  相似文献   

15.
  1. Download : Download high-res image (209KB)
  2. Download : Download full-size image
Highlights
  • •Two molecular groups in anal squamous carcinoma according proteomic profile.
  • •Differences in possible targeted processes such as metabolism or immune response.
  • •Different percentage of tumor lymphocyte infiltration.
  • •Difference in the frequency of ATM variants, related to PPAR inhibitors.
  相似文献   

16.
头颈部鳞状细胞癌(head and neck squamous cell carcinoma,HNSCC)是头颈部恶性肿瘤的主要病理类型,约占所有头颈部肿瘤的90%。而据我们临床所见,大约有70%~80%的患者就诊时已为局部晚期,其治疗效果欠佳,预后差。肿瘤标志物又叫做肿瘤标记物,是指特征性存在于恶性肿瘤细胞,或是由恶性肿瘤细胞异常而产生的物质,或是宿主对于肿瘤的刺激反应而产生的物质,并且能够反映肿瘤发生、发展,以及监测肿瘤对治疗反应的一类物质。作为近年来研究热点的肿瘤标志物,具有简便、经济、快速、无创的特点,更重要的是一些标志物在组织器官发生形态学变化之前就有表达。因此,肿瘤标志物的研究对头颈部鳞状细胞癌的早期诊断以及判断预后都具有十分重要的意义。本文综述近几年来发现的可能与头颈部鳞状细胞癌的发生发展或者预后相关的肿瘤标志物。  相似文献   

17.
18.
Loco-regional invasion of head and neck cancer is linked to metastatic risk and presents a difficult challenge in designing and implementing patient management strategies. Orthotopic mouse models of oral cancer have been developed to facilitate the study of factors that impact invasion and serve as model system for evaluating anti-tumor therapeutics. In these systems, visualization of disseminated tumor cells within oral cavity tissues has typically been conducted by either conventional histology or with in vivo bioluminescent methods. A primary drawback of these techniques is the inherent inability to accurately visualize and quantify early tumor cell invasion arising from the primary site in three dimensions. Here we describe a protocol that combines an established model for squamous cell carcinoma of the tongue (SCOT) with two-photon imaging to allow multi-vectorial visualization of lingual tumor spread. The OSC-19 head and neck tumor cell line was stably engineered to express the F-actin binding peptide LifeAct fused to the mCherry fluorescent protein (LifeAct-mCherry). Fox1nu/nu mice injected with these cells reliably form tumors that allow the tongue to be visualized by ex-vivo application of two-photon microscopy. This technique allows for the orthotopic visualization of the tumor mass and locally invading cells in excised tongues without disruption of the regional tumor microenvironment. In addition, this system allows for the quantification of tumor cell invasion by calculating distances that invaded cells move from the primary tumor site. Overall this procedure provides an enhanced model system for analyzing factors that contribute to SCOT invasion and therapeutic treatments tailored to prevent local invasion and distant metastatic spread. This method also has the potential to be ultimately combined with other imaging modalities in an in vivo setting.  相似文献   

19.
目的:探讨膜联蛋白A2(Anxa2)和细胞信号转导和转录激活因子3(Stat3)在口腔鳞癌组织中的表达及其临床意义。方法:选择口腔鳞癌石蜡标本80例为实验组,20例正常口腔黏膜组织为对照组。应用免疫组织化学法检测Anxa2和Stat3蛋白的阳性表达,并进行结果判定,采用x2和Spearman等级相关分析法分析二者表达差异性及其相关性。结果:Anxa2、Stat3在病例组中的阳性表达率,分别为81.3%(65/80)、87.5%(70/80),明显高于对照组中的表达率,25.0%(5/20)、30.0%(6/20),且差异有统计学意义(P0.05),Anxa2和Stat3蛋白表达水平与口腔鳞癌的分期、淋巴结转移及分化程度有密切关系。Spearman等级相关分析Anxa2和Stat3在口腔鳞癌组织中蛋白的表达呈正相关(r=0.302,P0.01)。结论:Anxa2、Stat3在OSCC的发生和转移过程中均具有重要的作用,且二者间也有相互作用的关系。  相似文献   

20.
为了阐明鼻咽癌中高表达的p53蛋白聚集与失活的机制,高通量地检测与p53功能相关的蛋白质,首先采用RNA干扰(RNAi)技术稳定沉默鼻咽癌细胞系CNE2的p53基因表达,然后用蛋白质组技术研究稳定沉默该基因对鼻咽癌蛋白质表达谱的影响.通过对稳定干扰p53基因后鼻咽癌细胞系CNE2的蛋白质表达谱改变的研究,用基质辅助激光解吸电离飞行时间质谱(MALDI-TOF-MS)分析和电喷雾串联质谱(ESI-Q-TOF-MS)验证鉴定了22个差异表达蛋白质.在这些差异表达蛋白质中,有些是已经报道的p53功能相关蛋白质,如热休克蛋白27(HSP27)、异质性胞核核糖核蛋白K(hnRNPK)、14-3-3σ等,其他可能是新的p53功能相关蛋白质,如eIF4B、TPT1、hnRNPH3、SFRS1等.部分差异表达蛋白质如HSP27、14-3-3σ和GRP75经蛋白质印迹分析技术进行了验证,同时pcDNA3.1-FLAG-p53质粒转染CNE2细胞引起了HSP27、14-3-3σ表达下调,GRP75表达上调.在鼻咽癌细胞中鉴定的22个差异表达蛋白质大致可以分为5类,包括信号传导相关蛋白质、分子伴侣、与转录和翻译相关蛋白质、代谢相关蛋白和细胞结构相关蛋白质,涉及到细胞周期的调控、分子基因表达调控、细胞黏附、细胞代谢等众多事件,它们可能作为p53功能相关蛋白质,为阐明鼻咽癌中p53蛋白聚集及失活的机制提供了重要依据和线索.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号