首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The role of IL-7 in pre-T cell receptor (TCR) signaling during human T cell development is poorly understood. To study this, we engineered Molt3, a T cell progenitor T-acute lymphoblastic leukemia cell line, using lentiviral IL-7 receptor α (IL-7Rα) to serve as a model system. IL-7 promoted pre-TCR activation in IL-7Rαhi Molt3 as illustrated by CD25 up-regulation after anti-CD3 stimulation. Anti-CD3 treatment activated Akt and Erk1/2 signaling pathways as proven using specific inhibitors, and IL-7 further enhanced both signaling pathways. The close association of IL-7Rα with CD3ζ in the pre-TCR complex was illustrated through live imaging confocal fluorescence microscopy. These results demonstrate a direct and cooperative role of IL-7 in pre-TCR signaling.  相似文献   

2.
3.
Epstein-Barr virus (EBV) efficiently drives proliferation of human primary B cells in vitro, a process relevant for human diseases such as infectious mononucleosis and posttransplant lymphoproliferative disease. Human B-cell proliferation is also driven by ligands of Toll-like receptors (TLRs), notably viral or bacterial DNA containing unmethylated CpG dinucleotides, which triggers TLR9. Here we quantitatively investigated how TLR stimuli influence EBV-driven B-cell proliferation and expression of effector molecules. CpG DNA synergistically increased EBV-driven proliferation and transformation, T-cell costimulatory molecules, and early production of interleukin-6. CpG DNA alone activated only memory B cells, but CpG DNA enhanced EBV-mediated transformation of both memory and naive B cells. Ligands for TLR2 or TLR7/8 or whole bacteria had a weaker but still superadditive effect on B-cell transformation. Additionally, CpG DNA facilitated the release of transforming virus by established EBV-infected lymphoblastoid cell lines. These results suggest that the proliferation of EBV-infected B cells and their capability to interact with immune effector cells may be directly influenced by components of bacteria or other microbes present at the site of infection.Epstein-Barr virus (EBV), a herpesvirus, is a very successful infectious agent: it establishes and maintains latent infection in >95% of human beings worldwide. This success is related to EBV''s varied strategies to maintain itself in its preferred host cell type, the B cell, by establishing different modes of latent infection (46). Some of these modes (latency modes 0, I, and II) are characterized by a resting B-cell phenotype and expression of a very limited set of EBV proteins (from none to four). In contrast, latency III involves the expression of at least 12 EBV latent-cycle gene products (10 proteins and 2 RNAs) (30, 31), which in their combined action profoundly alter the B cell''s appearance and behavior by inducing B-cell activation associated with proliferation, altered receptor expression, and cytokine secretion, as well as causing enhanced antigen presentation (31).In these various features, EBV infection of the latency III type resembles physiological activation of B cells in germinal centers even in its molecular details, because EBV closely mimics or constitutively activates some of the B cell''s main signaling pathways. Exogenous physiological signals leading to B-cell activation have been classified as “signal 1,” the stimulation of the B-cell receptor (BCR) by antigen binding; “signal 2,” the stimulation of CD40 by the CD40 ligand molecule, expressed on activated helper T cells; and “signal 3,” the stimulation of Toll-like receptors (TLRs) by microbial components, such as unmethylated CpG DNA, or their mimics. All three signals together are required for maximal proliferation of naive B cells (47). However, stimulation with TLR ligands alone, for example, CpG DNA, is sufficient to cause transient B-cell activation, including proliferation and induction of immune effector molecules such as CD86, a T-cell-costimulatory molecule (24). Additional immune effectors, the cytokines interleukin-6 (IL-6), IL-10, and IL-12, are induced when CpG stimulation is combined with strong CD40 stimulation (55).For primary infection of B cells, it is well established that EBV''s latent membrane proteins LMP2A (10, 39) and LMP1 (22) mimic signaling by the BCR and CD40, respectively. It is less clear whether and how EBV generates a potential signal 3 in the course of primary B-cell infection. A role of the TLR7 pathway has been proposed, based on the observation that EBV infection of naive B cells elevates the expression of TLR7 and its downstream signaling mediators (40). Additional mechanisms have recently been proposed to explain how EBV might trigger TLRs or other pattern recognition receptors in other cellular systems. For example, the Epstein-Barr virus-encoded small RNAs (EBERs) were described to trigger the retinoic acid-inducible gene I (RIG-I)-encoded protein, a receptor for various viral RNAs, in Burkitt''s lymphoma cells (48, 49). TLR2 signaling in monocytes is activated by binding of EBV particles to the cells (21) or by extracellular provision of EBV dUTPase (2).However, a physiologically relevant signal 3 need not originate in EBV itself. Other microbial agents present at the site of EBV infection might influence EBV infection, B-cell transformation, and virus release. For example, infectious mononucleosis (IM), a frequent consequence of primary EBV infection in adolescents and adults, is usually accompanied by tonsillitis with characteristic massive bacterial colonization (50), a likely source of TLR agonists acting on local EBV-infected B cells. Here we investigate the effects of CpG DNA and other exogenous TLR ligands on EBV-driven B-cell proliferation, clonal outgrowth, and induction of activation-associated cellular receptors and cytokines.  相似文献   

4.
Multiple sclerosis (MS) is a chronic degenerative disease of the central nervous system that is characterized by myelin abnormalities, oligodendrocyte pathology, and concomitant glia activation. The factors triggering gliosis and demyelination are currently not well characterized. New findings suggest an important role of the innate immune response in the initiation and progression of active demyelinating lesions. Especially during progressive disease, aberrant glia activation rather than the invasion of peripheral immune cells is accountable for progressive neuronal injury. The innate immune response can be induced by pathogen-associated or danger-associated molecular patterns, which are identified by pattern recognition receptors (PRRs), including the Toll-like receptors (TLRs). In this study, we used the cuprizone model in mice to investigate the expression of TLR2 during the course of cuprizone-induced demyelination. In addition, we used TLR2-deficient mice to analyze the functional role of TLR2 activation during cuprizone-induced demyelination and reactive gliosis. We show a significantly increased expression of TLR2 in the corpus callosum and hippocampus of cuprizone-intoxicated mice. The absence of receptor signaling in TLR2-deficient mice resulted in less severe reactive astrogliosis in the corpus callosum and cortex. In addition, microglia activation was ameliorated in the corpus callosum of TLR2-deficient mice, but augmented in the cortex compared to wild-type littermates. Extent of demyelination and loss of mature oligodendrocytes was comparable in both genotypes. These results suggest that the TLR2 orchestrates glia activation during gray and white matter demyelination in the presence of an intact blood-brain barrier. Future studies now have to address the underlying mechanisms of the region-specific TLR2-mediated glia activation.  相似文献   

5.
Antigen binding to the B cell receptor (BCR) induces receptor clustering, cell spreading, and the formation of signaling microclusters, triggering B cell activation. Although the biochemical pathways governing early B cell signaling have been well studied, the role of the physical properties of antigens, such as antigen mobility, has not been fully examined. We study the interaction of B cells with BCR ligands coated on glass or tethered to planar lipid bilayer surfaces to investigate the differences in B cell response to immobile and mobile ligands. Using high-resolution total internal reflection fluorescence (TIRF) microscopy of live cells, we followed the movement and spatial organization of BCR clusters and the associated signaling. Although ligands on either surface were able to cross-link BCRs and induce clustering, B cells interacting with mobile ligands displayed greater signaling than those interacting with immobile ligands. Quantitative analysis revealed that mobile ligands enabled BCR clusters to move farther and merge more efficiently than immobile ligands. These differences in physical reorganization of receptor clusters were associated with differences in actin remodeling. Perturbation experiments revealed that a dynamic actin cytoskeleton actively reorganized receptor clusters. These results suggest that ligand mobility is an important parameter for regulating B cell signaling.  相似文献   

6.
The Eph receptor tyrosine kinases interact with their ephrin ligands on adjacent cells to facilitate contact-dependent cell communication. Ephrin B ligands are expressed on T cells and have been suggested to act as co-stimulatory molecules during T cell activation. There are no detailed reports of the expression and modulation of EphB receptors on dendritic cells, the main antigen presenting cells that interact with T cells. Here we show that mouse splenic dendritic cells (DC) and bone-marrow derived DCs (BMDC) express EphB2, a member of the EphB family. EphB2 expression is modulated by ligation of TLR4 and TLR9 and also by interaction with ephrin B ligands. Co-localization of EphB2 with MHC-II is also consistent with a potential role in T cell activation. However, BMDCs derived from EphB2 deficient mice were able to present antigen in the context of MHC-II and produce T cell activating cytokines to the same extent as intact DCs. Collectively our data suggest that EphB2 may contribute to DC responses, but that EphB2 is not required for T cell activation. This result may have arisen because DCs express other members of the EphB receptor family, EphB3, EphB4 and EphB6, all of which can interact with ephrin B ligands, or because EphB2 may be playing a role in another aspect of DC biology such as migration.  相似文献   

7.
Antigen binding to the B cell receptor (BCR) induces receptor clustering, cell spreading, and the formation of signaling microclusters, triggering B cell activation. Although the biochemical pathways governing early B cell signaling have been well studied, the role of the physical properties of antigens, such as antigen mobility, has not been fully examined. We study the interaction of B cells with BCR ligands coated on glass or tethered to planar lipid bilayer surfaces to investigate the differences in B cell response to immobile and mobile ligands. Using high-resolution total internal reflection fluorescence (TIRF) microscopy of live cells, we followed the movement and spatial organization of BCR clusters and the associated signaling. Although ligands on either surface were able to cross-link BCRs and induce clustering, B cells interacting with mobile ligands displayed greater signaling than those interacting with immobile ligands. Quantitative analysis revealed that mobile ligands enabled BCR clusters to move farther and merge more efficiently than immobile ligands. These differences in physical reorganization of receptor clusters were associated with differences in actin remodeling. Perturbation experiments revealed that a dynamic actin cytoskeleton actively reorganized receptor clusters. These results suggest that ligand mobility is an important parameter for regulating B cell signaling.  相似文献   

8.
Establishment of a chronic infection is a key event in virus-mediated carcinogenesis. Several cancer-associated, double-stranded DNA (dsDNA) viruses act via their oncoproteins to downregulate Toll-like receptor 9 (TLR9), a key receptor in the host innate immune response that senses viral or bacterial dsDNA. A novel oncogenic virus, Merkel cell polyomavirus (MCPyV), has been recently identified that causes up to 80% of Merkel cell carcinomas (MCCs). However, it is not yet known whether this oncogenic virus also disrupts immune-related pathways. We find that MCPyV large T antigen (LT) expression downregulates TLR9 expression in epithelial and MCC-derived cells. Accordingly, silencing of LT expression results in upregulation of mRNA TLR9 levels. In addition, small T antigen (sT) also appears to inhibit TLR9 expression, since inhibition of its expression also resulted in an increase of TLR9 mRNA levels. LT inhibits TLR9 expression by decreasing the mRNA levels of the C/EBPβ transactivator, a positive regulator of the TLR9 promoter. Chromatin immunoprecipitation reveals that C/EBPβ binding at a C/EBPβ response element (RE) in the TLR9 promoter is strongly inhibited by expression of MCPyV early genes and that mutation of the C/EBP RE prevents MCPyV downregulation of TLR9. A survey of BK polyomavirus (BKPyV), JC polyomavirus (JCPyV), KI polyomavirus (KIPyV), MCPyV, simian virus 40 (SV40), and WU polyomavirus (WUPyV) early genes revealed that only BKPyV and MCPyV are potent inhibitors of TLR9 gene expression. MCPyV LT targeting of C/EBP transactivators is likely to play an important role in viral persistence and potentially inhibit host cell immune responses during MCPyV tumorigenesis.  相似文献   

9.

Background

T cell migration is essential for immune responses and inflammation. Activation of the T-cell receptor (TCR) triggers a migration stop signal to facilitate interaction with antigen-presenting cells and cell retention at inflammatory sites, but the mechanisms responsible for this effect are not known.

Methodology/Principal Findings

Migrating T cells are polarized with a lamellipodium at the front and uropod at the rear. Here we show that transient TCR activation induces prolonged inhibition of T-cell migration. TCR pre-activation leads to cells with multiple lamellipodia and lacking a uropod even after removal of the TCR signal. A similar phenotype is induced by expression of constitutively active Rac1, and TCR signaling activates Rac1. TCR signaling acts via Rac to reduce phosphorylation of ezrin/radixin/moesin proteins, which are required for uropod formation, and to increase stathmin phosphorylation, which regulates microtubule stability. T cell polarity and migration is partially restored by inhibiting Rac or by expressing constitutively active moesin.

Conclusions/Significance

We propose that transient TCR signaling induces sustained inhibition of T cell migration via Rac1, increased stathmin phosphorylation and reduced ERM phosphorylation which act together to inhibit T-cell migratory polarity.  相似文献   

10.
11.
12.
Mantle cell lymphoma (MCL) is an aggressive B-cell non-Hodgkin’s lymphoma with a still undefined etiology. Several lines of evidence are consistent with the possible involvement of peculiar microenvironmental stimuli sustaining tumor cell growth and survival, as the activation of Toll-like receptors (TLR) 4 and 9. However, little is known about the contribution of other TLRs of pathogenic relevance in the development of MCL. This study reports evidence that MCL cell lines and primary MCL cells express different levels of TLR2 and TLR5, and that their triggering is able to further activate the Akt, MAPK, and NF-κB signaling cascades, known to be altered in MCL cells. This leads to the enhancement of cyclin D1 and D3 over-expression, occurring at post-translational level through a mechanism that likely involves the Akt/GSK-3α/β pathway. Interestingly, in primary B cells, TLR1/2 or TLR5 ligands increase protein level of cyclin D1, which is not usually expressed in normal B cells, and cyclin D3 when associated with CD40 ligand (CD40L), IL-4, and anti-human-IgM co-stimulus. Finally, the activation of TLR1/2 and TLR5 results in an increased proliferation of MCL cell lines and, in the presence of co-stimulation with CD40L, IL-4, and anti-human-IgM also of primary MCL cells and normal B lymphocytes. These effects befall together with an enhanced IL-6 production in primary cultures. Overall, our findings suggest that ligands for TLR1/2 or TLR5 may provide critical stimuli able to sustain the growth and the malignant phenotype of MCL cells. Further studies aimed at identifying the natural source of these TLR ligands and their possible pathogenic association with MCL are warranted in order to better understand MCL development, but also to define new therapeutic targets for counteracting the tumor promoting effects of lymphoma microenvironment.  相似文献   

13.
14.
Interleukin 6 (IL-6) is considered a proliferation and survival factor for B cells. To assess the role of IL-6 in Kaposi sarcoma-associated herpesvirus (KSHV) latency, KSHV latency locus-transgenic mice (referred to as latency mice) lacking IL-6 were evaluated. IL-6−/− latency mice had the same phenotypes as the latency mice, i.e., increased frequency of marginal zone B cells, hyperplasia, and hyperglobulinemia, indicating that the KSHV latency locus, which includes all viral microRNAs (miRNAs), can compensate for lack of IL-6 in premalignant B cell activation.  相似文献   

15.

Background

Toll-like receptors (TLRs) are among the first-line sentinels for immune detection and responsiveness to pathogens. The TLR2 subfamily of TLRs (TLR1, TLR2, TLR6) form heterodimers with each other and are thus able to recognize a broad range of components from several microbes such as yeast, Gram-positive bacteria and protozoa. Until now, TLR2 activation by bacterial ligands has long been associated with pro-inflammatory cytokines but not type I interferon responses.

Methodology/Principal Findings

Using a variety of transgenic mice, here we provide in vivo and in vitro data showing that TLR2 activation does in fact induce interferon-beta and that this occurs via MyD88-IRF1 and -IRF7 pathways. Interestingly, by microscopy we demonstrate that although a cell surface receptor, TLR2 dependent induction of type I interferons occurs in endolysosomal compartments where it is translocated to upon ligand engagement. Furthermore, we could show that blocking receptor internalization or endolysosomal acidification inhibits the ability of TLR2 to trigger the induction type I interferon but not pro-inflammatory responses.

Conclusion/Significance

The results indicate that TLR2 activation induces pro-inflammatory and type I interferon responses from distinct subcellular sites: the plasma membrane and endolysosomal compartments respectively. Apart from identifying and characterizing a novel pathway for induction of type I interferons, the present study offers new insights into how TLR signaling discriminates and regulates the nature of responses to be elicited against extracellular and endocytosed microbes. These findings may also have clinical implication. Excessive production of pro-inflammatory cytokines and type I IFNs following activation of TLRs is a central pathologic event in several hyper-inflammatory conditions. The discovery that the induction of pro-inflammatory and type I IFN responses can be uncoupled through pharmacological manipulation of endolysosomal acidification suggests new avenues for potential therapeutic intervention against inflammations and sepsis.  相似文献   

16.
17.
Viral respiratory infections activate the innate immune response in the airway epithelium through Toll-like receptors (TLRs) and induce airway inflammation, which causes acute exacerbation of asthma. Although increases in IL-17A expression were observed in the airway of severe asthma patients, the interaction between IL-17A and TLR activation in airway epithelium remains poorly understood. In this study, we demonstrated that IL-17A and polyI:C, the ligand of TLR3, synergistically induced the expression of proinflammatory cytokines and chemokines (G-CSF, IL-8, CXCL1, CXCL5, IL-1F9), but not type I interferon (IFN-α1, -β) in primary culture of normal human bronchial epithelial cells. Synergistic induction after co-stimulation with IL-17A and polyI:C was observed from 2 to 24 hours after stimulation. Treatment with cycloheximide or actinomycin D had no effect, suggesting that the synergistic induction occurred without de novo protein synthesis or mRNA stabilization. Inhibition of the TLR3, TLR/TIR-domain-containing adaptor-inducing interferon β (TRIF), NF-κB, and IRF3 pathways decreased the polyI:C- and IL-17A/polyI:C-induced G-CSF and IL-8 mRNA expression. Comparing the levels of mRNA induction between co-treatment with IL-17A/polyI:C and treatment with polyI:C alone, blocking the of NF-κB pathway significantly attenuated the observed synergism. In western blotting analysis, activation of both NF-κB and IRF3 was observed in treatment with polyI:C and co-treatment with IL-17A/polyI:C; moreover, co-treatment with IL-17A/polyI:C augmented IκB-α phosphorylation as compared to polyI:C treatment alone. Collectively, these findings indicate that IL-17A and TLR3 activation cooperate to induce proinflammatory responses in the airway epithelium via TLR3/TRIF-mediated NF-κB/IRF3 activation, and that enhanced activation of the NF-κB pathway plays an essential role in synergistic induction after co-treatment with IL-17A and polyI:C in vitro.  相似文献   

18.
19.
20.
《Cell reports》2020,30(10):3434-3447.e6
  1. Download : Download high-res image (129KB)
  2. Download : Download full-size image
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号