首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
自1977年第一代Sanger测序法诞生以来,测序技术经历了突飞猛进的发展,第二代和第三代测序技术相继出现。随着测序仪代次的更迭,实现测序目的的技术权重已逐渐由偏重生化反应转向偏重物理学、材料学等非生物学科。Life Technologies公司推出的Ion Torrent Personal Genomic Machine(PGM)就是这类技术转型的代表。我们对测序技术的发展和Ion TorrentPGM的特点及应用做简要综述。  相似文献   

2.
    
? Bread wheat (Triticum aestivum; Poaceae) is a crop plant of great importance. It provides nearly 20% of the world's daily food supply measured by calorie intake, similar to that provided by rice. The yield of wheat has doubled over the last 40 years due to a combination of advanced agronomic practice and improved germplasm through selective breeding. More recently, yield growth has been less dramatic, and a significant improvement in wheat production will be required if demand from the growing human population is to be met. ? Next-generation sequencing (NGS) technologies are revolutionizing biology and can be applied to address critical issues in plant biology. Technologies can produce draft sequences of genomes with a significant reduction to the cost and timeframe of traditional technologies. In addition, NGS technologies can be used to assess gene structure and expression, and importantly, to identify heritable genome variation underlying important agronomic traits. ? This review provides an overview of the wheat genome and NGS technologies, details some of the problems in applying NGS technology to wheat, and describes how NGS technologies are starting to impact wheat crop improvement.  相似文献   

3.
Synthetic biology is an emerging discipline for designing and synthesizing predictable, measurable, controllable, and transformable biological systems. These newly designed biological systems have great potential for the development of cheaper drugs, green fuels, biodegradable plastics, and targeted cancer therapies over the coming years. Fortunately, our ability to quickly and accurately engineer biological systems that behave predictably has been dramatically expanded by significant advances in DNA-sequencing, DNA-synthesis, and DNA-editing technologies. Here, we review emerging technologies and methodologies in the field of building designed biological systems, and we discuss their future perspectives.  相似文献   

4.
高通量测序技术在动植物研究领域中的应用   总被引:4,自引:0,他引:4  
高通量测序是核酸测序研究的一次革命性技术创新, 该技术以极低的单碱基测序成本和超高的数据产出量为特征, 为基因组学和后基因组学研究带来了新的科研方法和解决方案. 在动植物研究领域, 高通量测序引领了一次具有里程碑意义的科学研究模式革新, 科研人员可利用该技术在基因组、转录组和表观基因组等领域展开多层次多方面多水平研究. 本文就高通量测序技术应用于动植物基因组学和功能基因组学研究进展进行了系统阐述, 并对当前高通量测序技术的现状和热点及未来的发展趋势作了深入剖析和讨论.  相似文献   

5.
Wheat is the third most important crop for human nutrition in the world. The availability of high-resolution genetic and physical maps and ultimately a complete genome sequence holds great promise for breeding improved varieties to cope with increasing food demand under the conditions of changing global climate. However, the large size of the bread wheat (Triticum aestivum) genome (approximately 17 Gb/1C) and the triplication of genic sequence resulting from its hexaploid status have impeded genome sequencing of this important crop species. Here we describe the use of mitotic chromosome flow sorting to separately purify and then shotgun-sequence a pair of telocentric chromosomes that together form chromosome 4A (856 Mb/1C) of wheat. The isolation of this much reduced template and the consequent avoidance of the problem of sequence duplication, in conjunction with synteny-based comparisons with other grass genomes, have facilitated construction of an ordered gene map of chromosome 4A, embracing ≥85% of its total gene content, and have enabled precise localization of the various translocation and inversion breakpoints on chromosome 4A that differentiate it from its progenitor chromosome in the A genome diploid donor. The gene map of chromosome 4A, together with the emerging sequences of homoeologous wheat chromosome groups 4, 5 and 7, represent unique resources that will allow us to obtain new insights into the evolutionary dynamics between homoeologous chromosomes and syntenic chromosomal regions.  相似文献   

6.
    
We performed whole-genome Illumina resequencing of 198 accessions to examine the genetic diversity and facilitate the use of soybean genetic resources and identified 10 million single nucleotide polymorphisms and 2.8 million small indels. Furthermore, PacBio resequencing of 10 accessions was performed, and a total of 2,033 structure variants were identified. Genetic diversity and structure analysis congregated the 198 accessions into three subgroups (Primitive, World, and Japan) and showed the possibility of a long and relatively isolated history of cultivated soybean in Japan. Additionally, the skewed regional distribution of variants in the genome, such as higher structural variations on the R gene clusters in the Japan group, suggested the possibility of selective sweeps during domestication or breeding. A genome-wide association study identified both known and novel causal variants on the genes controlling the flowering period. Novel candidate causal variants were also found on genes related to the seed coat colour by aligning together with Illumina and PacBio reads. The genomic sequences and variants obtained in this study have immense potential to provide information for soybean breeding and genetic studies that may uncover novel alleles or genes involved in agronomically important traits.  相似文献   

7.
    
Fundamental improvement was made for genome sequencing since the next-generation sequencing (NGS) came out in the 2000s. The newer technologies make use of the power of massively-parallel short-read DNA sequencing, genome alignment and assembly methods to digitally and rapidly search the genomes on a revolutionary scale, which enable large-scale whole genome sequencing (WGS) accessible and practical for researchers. Nowadays, whole genome sequencing is more and more prevalent in detecting the genetics of diseases, studying causative relations with cancers, making genome-level comparative analysis, reconstruction of human population history, and giving clinical implications and instructions. In this review, we first give a typical pipeline of whole genome sequencing, including the lab template preparation, sequencing, genome assembling and quality control, variants calling and annotations. We compare the difference between whole genome and whole exome sequencing (WES), and explore a wide range of applications of whole genome sequencing for both mendelian diseases and complex diseases in medical genetics. We highlight the impact of whole genome sequencing in cancer studies, regulatory variant analysis, predictive medicine and precision medicine, as well as discuss the challenges of the whole genome sequencing.   相似文献   

8.
谈成  边成  杨达  李宁  吴珍芳  胡晓湘 《遗传》2017,39(11):1033-1045
基因组选择(genomic selection, GS)是畜禽经济性状遗传改良的重要方法。随着高密度SNP芯片和二代测序价格的下降,GS技术越来越多被应用于奶牛、猪、鸡等农业动物育种中。然而,降低全基因组SNP分型成本、提高基因组育种值(genomic estimated breeding value,GEBV)估计准确性仍然是GS研究的主要难题。本文从全基因组SNP分型策略和GEBV估计模型两个方面进行了综述,并对目前GS技术在主要畜禽品种中的应用现状进行了介绍,以期为GS在农业动物育种中的深入开展提供借鉴和参考。  相似文献   

9.
During the last three decades, both genome mapping and sequencing methods have advanced significantly to provide a foundation for scientists to understand genome structures and functions in many species. Generally speaking, genome mapping relies on genome sequencing to provide basic materials, such as DNA probes and markers for their localizations, thus constructing the maps. On the other hand, genome sequencing often requires a high-resolution map as a skeleton for whole genome assembly. However, both genome mapping and sequencing have never come together in one pipeline. After reviewing mapping and next-generation sequencing methods, we would like to share our thoughts with the genome community on how to combine the HAPPY mapping technique with the new-generation sequencing, thus integrating two systems into one pipeline, called HAPPY pipeline. The pipeline starts with preparation of a HAPPY panel, followed by multiple displacement amplification for producing a relatively large quantity of DNA. Instead of conventional marker genotyping, the amplified panel DNA samples are subject to new-generation sequencing with barcode method, which allows us to determine the presence/absence of a sequence contig as a traditional marker in the HAPPY panel. Statistical analysis will then be performed to infer how close or how far away from each other these contigs are within a genome and order the whole genome sequence assembly as well. We believe that such a universal approach will play an important role in genome sequencing, mapping, and assembly of many species; thus advancing genome science and its applications in biomedicine and agriculture.  相似文献   

10.
A report on the European Society of Human Genetics conference, held in Paris, France, June 8-11, 2013.  相似文献   

11.
    
The genome of bread wheat (Triticum aestivum) is predicted to be greater than 16 Gbp in size and consist predominantly of repetitive elements, making the sequencing and assembly of this genome a major challenge. We have reduced genome sequence complexity by isolating chromosome arm 7DS and applied second‐generation technology and appropriate algorithmic analysis to sequence and assemble low copy and genic regions of this chromosome arm. The assembly represents approximately 40% of the chromosome arm and all known 7DS genes. Comparison of the 7DS assembly with the sequenced genomes of rice (Oryza sativa) and Brachypodium distachyon identified large regions of conservation. The syntenic relationship between wheat, B. distachyon and O. sativa, along with available genetic mapping data, has been used to produce an annotated draft 7DS syntenic build, which is publicly available at http://www.wheatgenome.info . Our results suggest that the sequencing of isolated chromosome arms can provide valuable information of the gene content of wheat and is a step towards whole‐genome sequencing and variation discovery in this important crop.  相似文献   

12.
小麦及其近缘种中基因组特异性DNA重复序列的研究进展   总被引:6,自引:1,他引:6  
白建荣  贾旭  王道文 《遗传》2002,24(5):595-600
本文对小麦族植物中基因组特异性DNA重复序列的分类、基本特征、分离和鉴定方法、在小麦遗传改良中的应用以及未来研究的发展趋势进行了简述。综合已有的研究结果可以看出基因组特异性DNA重复序列是小麦族植物基因组特异性形成的重要构成部分。对基因组特异性DNA重复序列的研究是认识小麦族植物基因组的有效途径之一,基因组特异性DNA重复序列的应用将进一步促进小麦族植物分子细胞遗传学和普通小麦遗传改良研究的进展。Advances in Studies of Genome-Specific Repetitive DNA Sequences in Wheat and Related SpeciesBAI Jian-rong1,2,JIA Xu1,WANG Dao-wen11.The State Key Laboratory of Plant Cell and Chromosome Engineering,Institute of Genetics and Developmental Biology,The Chinese Academy of Sciences,Beijing 100101,China;2.Crop Genetics Institute,Shanxi Academy of Agricultural Sciences,Taiyuan 030031,ChinaAbstract:In this paper we review recent advances in studies of several aspects of genome specific repetitive DNA sequences in wheat and related species.The available results demonstrate that genome specific repetitive DNA sequences are important components of genome specificity in wheat and related species.Research on genome specific repetitive DNA sequences is essential to the elucidation of genome function.The application of genome specific repetitive DNA sequences will aid molecular cytogenetic studies in wheat and related species and contributes to genetic improvement of common wheat.Key words:wheat;genome specific repetitive DNA sequence;chromosome  相似文献   

13.
    
Fusion genes formed by chromosomal rearrangements are common drivers of cancer. Recent innovations in the field of next-generation sequencing (NGS) have seen a dynamic shift from traditional fusion detection approaches, such as visual characterization by fluorescence, to more precise multiplexed methods. There are many different NGS-based approaches to fusion gene detection and deciding on the most appropriate method can be difficult. Beyond the experimental approach, consideration needs to be given to factors such as the ease of implementation, processing time, associated costs, and the level of expertise required for data analysis. Here, the different NGS-based methods for fusion gene detection, the basic principles underlying the techniques, and the benefits and limitations of each approach are reviewed. This article concludes with a discussion of how NGS will impact fusion gene detection in a clinical context and from where the next innovations are evolving.  相似文献   

14.
15.
16.
Dengue virus (DENV) infections represent a significant concern for public health worldwide, being considered as the most prevalent arthropod-borne virus regarding the number of reported cases. In this study, we report the complete genome sequencing of a DENV serotype 4 isolate, genotype II, obtained in the city of Manaus, directly from the serum sample, applying Ion Torrent sequencing technology. The use of a massive sequencing technology allowed the detection of two variable sites, one in the coding region for the viral envelope protein and the other in the nonstructural 1 coding region within viral populations.  相似文献   

17.
In most organisms the synaptonemal complex (SC) connects paired homologs along their entire length during much of meiotic prophase. To better understand the structure of the SC, we aim to identify its components and to determine how each of these components contributes to SC function. Here, we report the identification of a novel SC component in Drosophila melanogaster female oocytes, which we have named Corolla. Using structured illumination microscopy, we demonstrate that Corolla is a component of the central region of the SC. Consistent with its localization, we show by yeast two-hybrid analysis that Corolla strongly interacts with Cona, a central element protein, demonstrating the first direct interaction between two inner-synaptonemal complex proteins in Drosophila. These observations help provide a more complete model of SC structure and function in Drosophila females.  相似文献   

18.
    
Throughout its distribution across Eurasia, domestic pig (Sus scrofa) populations have acquired differences through natural and artificial selection, and have often interbred. We resequenced 80 Eurasian pigs from nine different Asian and European breeds; we identify 42,288 reliable SNPs on the Y chromosome in a panel of 103 males, among which 96.1% are newly detected. Based on these new data, we elucidate the evolutionary history of pigs through the lens of the Y chromosome. We identify two highly divergent haplogroups: one present only in Asia and one fixed in Europe but present in some Asian populations. Analyzing the European haplotypes present in Asian populations, we find evidence of three independent waves of introgression from Europe to Asia in last 200 years, agreeing well with the literature and historical records. The diverse European lineages were brought in China by humans and left significant imprints not only on the autosomes but also on the Y chromosome of geographically and genetically distinct Chinese pig breeds. We also find a general excess of European ancestry on Y chromosomes relative to autosomes in Chinese pigs, an observation that cannot be explained solely by sex-biased migration and genetic drift. The European Y haplotype is associated with leaner meat production, and we hypothesize that the European Y chromosome increased in frequency in Chinese populations due to artificial selection. We find evidence of Y chromosomal gene flow between Sumatran wild boar and Chinese pigs. Our results demonstrate how human-mediated admixture and selection shaped the distribution of modern swine Y chromosomes.  相似文献   

19.
20.
    
DNA markers play important roles in plant breeding and genetics.The Insertion/Deletion(InDel) marker is one kind of co-dominant DNA markers widely used due to its low cost and high precision.However,the canonical way of searching for InDel markers is time-consuming and laborintensive.We developed an end-to-end computational solution(InDel Markers Development Platform,IMDP) to identify genome-wide InDel markers under a graphic pipeline environment.IMDP constitutes assembled genome sequences alignment pipeline(AGA-pipe) and next-generation resequencing data mapping pipeline(NGS-pipe).With AGA-pipe we are able to identify 12,944 markers between the genome of rice cultivars Nipponbare and 93-11.Using NGS-pipe,we reported 34,794 InDels from re-sequencing data of rice cultivars Wu-Yun-Geng7 and Guang-Lu-Ai4.Combining AGApipe and NGS-pipe,we developed 205,659 InDels in eight japonica and nine indica cultivars and 2,681 InDels showed a subgroup-specific pattern.Polymerase chain reaction(PCR)analysis of subgroup-specific markers indicated that the precision reached 90%(86 of 95).Finally,to make them available to the public,we have integrated the InDels/markers information into a website(Rice InDel Marker Database,RIMD,http://202.120.45.71/).The application of IMDP in rice will facilitate efficiency for development of genome-wide InDel markers,in addition it can be used in other species with reference genome sequences and NGS data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号