首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protein kinase D (PKD) transduces an abundance of signals downstream of diacylglycerol production. The mammalian PKD family consists of three isoforms, PKD1, PKD2, and PKD3; of these PKD1 and PKD2 contain PDZ-binding motifs at their carboxyl termini. Here we show that membrane-localized NHERF scaffold proteins provide a nexus for tightly controlled PKD signaling via a PDZ domain interaction. Using a proteomic array containing 96 purified PDZ domains, we have identified the first PDZ domain of NHERF-1 as an interaction partner for the PDZ-binding motifs of both PKD1 and PKD2. A fluorescence resonance energy transfer-based translocation assay reveals a transient association of PKD1 and PKD2 with NHERF-1 in live cells that is triggered by phorbol ester stimulation and, importantly, differs strikingly from the sustained translocation to plasma membrane. Targeting a fluorescence resonance energy transfer-based kinase activity reporter for PKD to NHERF scaffolds reveals a unique signature of PKD activation at the scaffold that is distinct from that of general cytosolic or plasma membrane activity. Specifically, agonist-evoked activation of PKD at the scaffold is rapid and sustained but blunted in magnitude when compared with cytosolic PKD. Thus, live cell imaging of PKD activity demonstrates ultrasensitive control of kinase signaling at the scaffold compared with bulk activity in the cytosol or at the plasma membrane.Protein kinase D (PKD)2 plays a role in numerous processes including cell proliferation, cell survival, immune cell signaling, gene expression, vesicle trafficking, and neuronal development (1). The PKD family consists of three members belonging to the Ca2+/calmodulin-dependent kinase group of serine/threonine protein kinases. Each isoform contains a conserved catalytic core and an amino-terminal regulatory moiety. This regulatory region contains two cysteine-rich (C1) domains and a pleckstrin homology domain that autoinhibits the kinase (2). The C1 domains are membrane-targeting modules that bind diacylglycerol (DAG) and its functional analogues, phorbol esters, thus recruiting PKD to membranes (3). The PKD1 and PKD2 isoforms additionally contain PDZ-binding motifs at their carboxyl termini that can target the kinases to distinct subcellular scaffolds through interactions with PDZ domain-containing proteins (4).PKD transduces signals downstream of the second messenger DAG. In addition to membrane recruitment by DAG, activation of PKD requires phosphorylation by novel protein kinase C (PKC) family members at two sites within its catalytic core (5, 6). The novel PKCs themselves contain C1 domains and are allosterically activated by DAG-mediated membrane binding; thus, DAG production leads to PKD activation through coincident activation of the novel PKCs and localization of PKD near its upstream kinases. Hence, activation of phospholipase C (PLC)-coupled receptors (such as certain G protein-coupled receptors (GPCRs) or receptor tyrosine kinases) results in the production of second messengers including DAG, and this leads to recruitment and activation of the novel PKCs and thus also PKD.PDZ (PSD-95, Discs large, ZO-1) domains are compact, globular structures of ∼90 residues, occurring in one or multiple copies within a protein, that mediate protein-protein interactions (7). These interactions occur via binding to other PDZ domains or, more commonly, by recognition of short amino acid motifs in the carboxyl termini of target proteins commonly terminating in a hydrophobic residue (8). In the case of PKD1 and PKD2, the last four amino acids are VSIL and ISVL, respectively. Here we identify Na+/H+ exchanger regulatory factor 1 (NHERF-1) as a PDZ domain-containing protein that interacts with the PDZ-binding motif of both PKD1 and PKD2.NHERF-1 was originally cloned as a critical protein component for the inhibition of Na+/H+ exchanger 3 by protein kinase A (9). NHERF-1 is 52% identical to NHERF-2, a family member with which it shares the conserved domain structure of two PDZ domains followed by an ezrin-radixin-moesin (ERM)-binding region (10). Parallel studies demonstrating its ability to strongly interact with ezrin independently identified NHERF-1 as ERM-binding phosphoprotein 50 (11). Via this ERM-binding region, NHERF-1 and NHERF-2 are predominantly localized near the actin cytoskeleton, thus poising them near the plasma membrane where they function as scaffolds. Since these original cloning reports, numerous studies have identified over 30 binding partners of these scaffold proteins including GPCRs, tyrosine kinase receptors, other adaptor proteins, signaling enzymes, and ion channels (12, 13).Here we identify PKD1 and PKD2 as NHERF-1-interacting proteins. Using a fluorescence resonance energy transfer (FRET)-based assay to assess molecular proximity, both PKD1 and PKD2 are shown to transiently associate with NHERF-1 following PKD activation. Furthermore, through use of genetically encoded reporters for PKD activity, we show a unique signature of PKD activation at the NHERF scaffold. Specifically, signaling is more tightly regulated at the scaffold than in the cytosol or bulk plasma membrane. Phosphatase activity is higher at NHERF than at the plasma membrane, resulting in a more rapidly reversible PKD response at the scaffold, and following an agonist-evoked response, PKD signaling is prolonged compared with the length of response in the cytosol. Our data identify NHERF-1 as a novel nexus of PKD signaling and raise the possibility that PKD may act as a novel regulator of proteins at the NHERF scaffold.  相似文献   

2.
Targeting of neuronal nitric-oxide synthase (nNOS) to appropriate sites in a cell is mediated by interactions with its PDZ domain and plays an important role in specifying the sites of reaction of nitric oxide (NO) in the central nervous system. Here we report the identification and characterization of a novel nNOS-interacting DHHC domain-containing protein with dendritic mRNA (NIDD) (GenBank accession number AB098078), which increases nNOS enzyme activity by targeting the nNOS to the synaptic plasma membrane in a PDZ domain-dependent manner. The deduced NIDD protein consisted of 392 amino acid residues and possessed five transmembrane segments, a zinc finger DHHC domain, and a PDZ-binding motif (-EDIV) at its C-terminal tail. In vitro pull-down assays suggested that the C-terminal tail region of NIDD specifically interacted with the PDZ domain of nNOS. The PDZ dependence was confirmed by an experiment using a deletion mutant, and the interaction was further confirmed by co-sedimentation assays using COS-7 cells transfected with NIDD and nNOS. Both NIDD and nNOS were enriched in synaptosome and synaptic plasma membrane fractions and were present in the lipid raft and postsynaptic density fractions in the rat brain. Co-localization of these proteins was also observed by double staining of the proteins in cultured cortical neurons. Thus, NIDD and nNOS were co-localized in the brain, although the colocalizing regions were restricted, as indicated by the distribution of their mRNA expression. Most important, co-transfection of NIDD and nNOS increased NO-producing nNOS activity. These results suggested that NIDD plays an important role in the regulation of the NO signaling pathway at postsynaptic sites through targeting of nNOS to the postsynaptic membrane.  相似文献   

3.
The prostanoid prostacyclin, or prostaglandin I2, plays an essential role in many aspects of cardiovascular disease. The actions of prostacyclin are mainly mediated through its activation of the prostacyclin receptor or, in short, the IP. In recent studies, the cytoplasmic carboxy-terminal domain of the IP was shown to bind several PDZ domains of the multi-PDZ adaptor PDZK1. The interaction between the two proteins was found to enhance cell surface expression of the IP and to be functionally important in promoting prostacyclin-induced endothelial cell migration and angiogenesis. To investigate the interaction of the IP with the first PDZ domain (PDZ1) of PDZK1, we generated a nine residue peptide (KK411IAACSLC417) containing the seven carboxy-terminal amino acids of the IP and measured its binding affinity to a recombinant protein corresponding to PDZ1 by isothermal titration calorimetry. We determined that the IP interacts with PDZ1 with a binding affinity of 8.2 µM. Using the same technique, we also determined that the farnesylated form of carboxy-terminus of the IP does not bind to PDZ1. To understand the molecular basis of these findings, we solved the high resolution crystal structure of PDZ1 bound to a 7-residue peptide derived from the carboxy-terminus of the non-farnesylated form of IP (411IAACSLC417). Analysis of the structure demonstrates a critical role for the three carboxy-terminal amino acids in establishing a strong interaction with PDZ1 and explains the inability of the farnesylated form of IP to interact with the PDZ1 domain of PDZK1 at least in vitro.  相似文献   

4.
Gee SH  Quenneville S  Lombardo CR  Chabot J 《Biochemistry》2000,39(47):14638-14646
PDZ domains are modular protein-protein interaction domains that bind to specific C-terminal sequences of membrane proteins and/or to other PDZ domains. Certain PDZ domains in PSD-95 and syntrophins interact with C-terminal peptide ligands and heterodimerize with the extended nNOS PDZ domain. The capacity to interact with nNOS correlates with the presence of a Lys residue in the carboxylate- binding loop of these PDZ domains. Here, we report that substitution of an Arg for Lys-165 in PSD-95 PDZ2 disrupted its interaction with nNOS, but not with the C terminus of the Shaker-type K(+) channel Kv1.4. The same mutation affected nNOS binding to alpha1- and beta1-syntrophin PDZ domains to a lesser extent, due in part to the stabilizing effect of tertiary interactions with the canonical nNOS PDZ domain. PDZ domains with an Arg in the carboxylate-binding loop do not bind nNOS; however, substitution with Lys or Ala was able to confer nNOS binding. Our results indicate that the carboxylate-binding loop Lys or Arg is a critical determinant of nNOS binding and that the identity of this residue can profoundly alter one mode of PDZ recognition without affecting another. We also analyzed the effects of mutating Asp-143, a residue in the alphaB helix of alpha1-syntrophin that forms a tertiary contact with the nNOS PDZ domain. This residue is important for both nNOS and C-terminal peptide binding and confers a preference for peptides with a positively charged residue at position -4. On this basis, we have identified the C terminus of the Kir2.1 channel as a possible binding partner for syntrophin PDZ domains. Together, our results demonstrate that single-amino acid substitutions alter the specificity and affinity of PDZ domains for their ligands.  相似文献   

5.
The activation and deactivation of Ca2+- and calmodulindependent neuronal nitric oxide synthase (nNOS) in the central nervous system must be tightly controlled to prevent excessive nitric oxide (NO) generation. Considering plasma membrane calcium ATPase (PMCA) is a key deactivator of nNOS, the present investigation aims to determine the key events involved in nNOS deactivation of by PMCA in living cells to maintain its cellular context. Using time-resolved F?rster resonance energy transfer (FRET), we determined the occurrence of Ca2+-induced protein-protein interactions between plasma membrane calcium ATPase 4b (PMCA4b) and nNOS in living cells. PMCA activation significantly decreased the intracellular Ca2+ concentrations ([Ca2+]i), which deactivates nNOS and slowdowns NO synthesis. Under the basal [Ca2+]i caused by PMCA activation, no protein-protein interactions were observed between PMCA4b and nNOS. Furthermore, both the PDZ domain of nNOS and the PDZ-binding motif of PMCA4b were essential for the protein-protein interaction. The involvement of lipid raft microdomains on the activity of PMCA4b and nNOS was also investigated. Unlike other PMCA isoforms, PMCA4 was relatively more concentrated in the raft fractions. Disruption of lipid rafts altered the intracellular localization of PMCA4b and affected the interaction between PMCA4b and nNOS, which suggest that the unique lipid raft distribution of PMCA4 may be responsible for its regulation of nNOS activity. In summary, lipid rafts may act as platforms for the PMCA4b regulation of nNOS activity and the transient tethering of nNOS to PMCA4b is responsible for rapid nNOS deactivation.  相似文献   

6.
Nitric oxide (NO) biosynthesis in cerebellum is preferentially activated by calcium influx through N-methyl-D-aspartate (NMDA)-type glutamate receptors, suggesting that there is a specific link between these receptors and neuronal NO synthase (nNOS). Here, we find that PSD-95 assembles a postsynaptic protein complex containing nNOS and NMDA receptors. Formation of this complex is mediated by the PDZ domains of PSD-95, which bind to the COOH termini of specific NMDA receptor subunits. In contrast, nNOS is recruited to this complex by a novel PDZ-PDZ interaction in which PSD-95 recognizes an internal motif adjacent to the consensus nNOS PDZ domain. This internal motif is a structured "pseudo-peptide" extension of the nNOS PDZ that interacts with the peptide-binding pocket of PSD-95 PDZ2. This asymmetric interaction leaves the peptide-binding pocket of the nNOS PDZ domain available to interact with additional COOH-terminal PDZ ligands. Accordingly, we find that the nNOS PDZ domain can bind PSD-95 PDZ2 and a COOH-terminal peptide simultaneously. This bivalent nature of the nNOS PDZ domain further expands the scope for assembly of protein networks by PDZ domains.  相似文献   

7.
Diseases caused by many Gram-negative bacterial pathogens depend on the activities of bacterial effector proteins that are delivered into eukaryotic cells via specialized secretion systems. Effector protein function largely depends on specific subcellular targeting and specific interactions with cellular ligands. PDZ domains are common domains that serve to provide specificity in protein-protein interactions in eukaryotic systems. We show that putative PDZ-binding motifs are significantly enriched among effector proteins delivered into mammalian cells by certain bacterial pathogens. We use PDZ domain microarrays to identify candidate interaction partners of the Shigella flexneri effector proteins OspE1 and OspE2, which contain putative PDZ-binding motifs. We demonstrate in vitro and in cells that OspE proteins interact with PDLIM7, a member of the PDLIM family of proteins, which contain a PDZ domain and one or more LIM domains, protein interaction domains that participate in a wide variety of functions, including activation of isoforms of protein kinase C (PKC). We demonstrate that activation of PKC during S. flexneri infection is attenuated in the absence of PDLIM7 or OspE proteins and that the OspE PDZ-binding motif is required for wild-type levels of PKC activation. These results are consistent with a model in which binding of OspE to PDLIM7 during infection regulates the activity of PKC isoforms that bind to the PDLIM7 LIM domain.  相似文献   

8.
Neuronal nitric-oxide synthase (nNOS) has various splicing variants and different subcellular localizations. nNOS can be found also in the nucleus; however, its exact role in this compartment is still not completely defined. In this report, we demonstrate that the PDZ domain allows the recruitment of nNOS to nuclei, thus favoring local NO production, nuclear protein S-nitrosylation, and induction of mitochondrial biogenesis. In particular, overexpression of PDZ-containing nNOS (nNOSα) increases S-nitrosylated CREB with consequent augmented binding on cAMP response element consensus sequence on peroxisome proliferator-activated receptor γ co-activator (PGC)-1α promoter. The resulting PGC-1α induction is accompanied by the expression of mitochondrial genes (e.g., TFAM, MtCO1) and increased mitochondrial mass. Importantly, full active nNOS lacking PDZ domain (nNOSβ) does not localize in nuclei and fails in inducing the expression of PGC-1α. Moreover, we substantiate that the mitochondrial biogenesis normally accompanying myogenesis is associated with nuclear translocation of nNOS. We demonstrate that α-Syntrophin, which resides in nuclei of myocytes, functions as the upstream mediator of nuclear nNOS translocation and nNOS-dependent mitochondrial biogenesis. Overall, our results indicate that altered nNOS splicing and nuclear localization could be contributing factors in human muscular diseases associated with mitochondrial impairment.  相似文献   

9.
W Tang  X Sun  J S Fang  M Zhang  N J Sucher 《Phytomedicine》2004,11(4):277-284
Excessive activation of N-methyl-D-aspartate receptors (NMDARs) and subsequent production of nitric oxide by neuronal nitric oxide synthase (nNOS) contribute to neuronal damage resulting from hypoxic and ischemic insults. NMDARs and nNOS are coupled together at the postsynaptic membrane through their interaction with postsynaptic density protein (PSD) 95 via PSD-95/disc large/zonula occludens-1 (PDZ) domains. We used NMR (nuclear magnetic resonance) spectroscopy to screen medicinal herbs used in traditional Chinese medicine (TCM) stroke therapy for compounds binding to the second PDZ domain (PDZ2) of PSD-95, the domain linking nNOS and PSD-95. Aqueous extract of Huangqin, the root of Scutellaria baicalensis Georgi (Labiatae), showed significant binding to PDZ2 of PSD-95. The binding site of the active components in the extract overlapped with the nNOS/NR2B-binding pocket of PDZ2 of PSD-95. Four flavones, baicalin, norwogonoside, oroxylin A-glucuronide (oroxyloside), and wogonoside were isolated and found to account for the PDZ-binding activity of the extract. NMR titration experiments showed that baicalin and norwogonoside displayed the highest PDZ2 binding affinity, while oroxylin A-glucuronide and wogonoside showed 4-5 fold less potency in binding to the PDZ domain. Identification of the PDZ binding activity of these compounds will allow investigating whether or not it contributes to the observed clinical effects of Radix Scutellariae. Furthermore, these molecules might provide leads for the development of drugs targeting the signaling pathways mediated by PDZ domains.  相似文献   

10.
Protein kinase D (PKD) controls protein traffic from the trans-Golgi network (TGN) to the plasma membrane of epithelial cells in an isoform-specific manner. However, whether the different PKD isoforms could be selectively regulating the traffic of their specific substrates remains unexplored. We identified the C terminus of the different PKDs that constitutes a postsynaptic density-95/discs large/zonula occludens-1 (PDZ)-binding motif in PKD1 and PKD2, but not in PKD3, to be responsible for the differential control of kinase D-interacting substrate of 220-kDa (Kidins220) surface localization, a neural membrane protein identified as the first substrate of PKD1. A kinase-inactive mutant of PKD3 is only able to alter the localization of Kidins220 at the plasma membrane when its C terminus has been substituted by the PDZ-binding motif of PKD1 or PKD2. This isoform-specific regulation of Kidins220 transport might not be due to differences among kinase activity or substrate selectivity of the PKD isoenzymes but more to the adaptors bound to their unique C terminus. Furthermore, by mutating the autophosphorylation site Ser(916), located at the critical position -2 of the PDZ-binding domain within PKD1, or by phorbol ester stimulation, we demonstrate that the phosphorylation of this residue is crucial for Kidins220-regulated transport. We also discovered that Ser(916) trans-phosphorylation takes place among PKD1 molecules. Finally, we demonstrate that PKD1 association to intracellular membranes is critical to control Kidins220 traffic. Our findings reveal the molecular mechanism by which PKD localization and activity control the traffic of Kidins220, most likely by modulating the recruitment of PDZ proteins in an isoform-specific and phosphorylation-dependent manner.  相似文献   

11.
Citrulline formation by both human neuronal nitric-oxide synthase (nNOS) and mouse macrophage inducible NOS was inhibited by the hydrogen sulfide (H2S) donor Na2S with IC50 values of ∼2.4·10−5 and ∼7.9·10−5 m, respectively, whereas human endothelial NOS was hardly affected at all. Inhibition of nNOS was not affected by the concentrations of l-arginine (Arg), NADPH, FAD, FMN, tetrahydrobiopterin (BH4), and calmodulin, indicating that H2S does not interfere with substrate or cofactor binding. The IC50 decreased to ∼1.5·10−5 m at pH 6.0 and increased to ∼8.3·10−5 m at pH 8.0. Preincubation of concentrated nNOS with H2S under turnover conditions decreased activity after dilution by ∼70%, suggesting irreversible inhibition. However, when calmodulin was omitted during preincubation, activity was not affected, suggesting that irreversible inhibition requires both H2S and NO. Likewise, NADPH oxidation was inhibited with an IC50 of ∼1.9·10−5 m in the presence of Arg and BH4 but exhibited much higher IC50 values (∼1.0–6.1·10−4 m) when Arg and/or BH4 was omitted. Moreover, the relatively weak inhibition of nNOS by Na2S in the absence of Arg and/or BH4 was markedly potentiated by the NO donor 1-(hydroxy-NNO-azoxy)-l-proline, disodium salt (IC50 ∼ 1.3–2.0·10−5 m). These results suggest that nNOS and inducible NOS but not endothelial NOS are irreversibly inhibited by H2S/NO at modest concentrations of H2S in a reaction that may allow feedback inhibition of NO production under conditions of excessive NO/H2S formation.  相似文献   

12.
The role of neuroendocrine peptide calcitonin (CT) and its receptor (CTR) in epithelial cancer progression is an emerging concept with great clinical potential. Expression of CT and CTR is frequently elevated in prostate cancers (PCs) and activation of CT–CTR axis in non-invasive PC cells induces an invasive phenotype. Here we show by yeast-two hybrid screens that CTR associates with the tight junction protein Zonula Occludens-1 (ZO-1) via the interaction between the type 1 PDZ motif at the carboxy-terminus of CTR and the PDZ3 domain of ZO-1. Mutation of either the CTR C-PDZ-binding motif or the ZO-1-PDZ3 domain did not affect binding of CTR with its ligand or G-protein-mediated signaling but abrogated destabilizing actions of CT on tight junctions and formation of distant metastases by orthotopically implanted PC cells in nude mice, indicating that these PDZ domain interactions were pathologically relevant. Further, we observed CTR-ZO-1 interactions in PC specimens by proximity ligation immunohistochemistry, and identified that the number of interactions in metastatic PC specimens was several-fold larger than in non-metastatic PC. Our results for the first time demonstrate a mechanism by which PDZ-mediated interaction between CTR and ZO1 is required for CT-stimulated metastasis of prostate cancer. Since many receptors contain PDZ-binding motifs, this would suggest that PDZ-binding motif-adaptor protein interactions constitute a common mechanism for cancer metastasis.  相似文献   

13.
Piserchio A  Fellows A  Madden DR  Mierke DF 《Biochemistry》2005,44(49):16158-16166
The association of the cystic fibrosis transmembrane regulator (CFTR) with two PDZ-containing molecular scaffolds (CAL and EBP50) plays an important role in CFTR trafficking and membrane maintenance. The CFTR-molecular scaffold interaction is mediated by the association of the C-terminus of the transmembrane regulator with the PDZ domains. Here, we characterize the structure and dynamics of the PDZ of CAL and the complex formed with CFTR employing high-resolution NMR. On the basis of NMR relaxation data, the alpha2 helix as well as the beta2-beta3 loop of CAL PDZ domain undergoes rapid dynamics. Molecular dynamics simulations suggest a concerted motion between the alpha2 helix and the beta1-beta2 and beta2-beta3 loops, elements which define the binding pocket, suggesting that dynamics may play a role in PDZ-ligand specificity. The C-terminus of CFTR binds to CAL with the final four residues (-D(-)(3)-T-R-L(0)) within the canonical PDZ-binding motif, between the beta2 strand and the alpha2 helix. The R(-)(1) and D(-)(3) side chains make a number of contacts with the PDZ domain; many of these interactions differ from those in the CFTR-EBP50 complex, suggesting sites that can be targeted in the development of PDZ-selective inhibitors that may help modulate CFTR function.  相似文献   

14.
Lemaire JF  McPherson PS 《FEBS letters》2006,580(30):6948-6954
PDZ domains mediate protein interactions primarily through either classical recognition of carboxyl-terminal motifs or PDZ/PDZ domain associations. Several studies have also described internal modes of PDZ recognition, most of which depend on β-finger structures. Here, we describe a novel interaction between the PDZ domain of nNOS and Vac14, the activator of the PtdIns(3)P 5-kinase PIKfyve. Binding assays using various Vac14 deletion constructs revealed a β-finger independent interaction that is based on a novel internal motif. Mutational analyses reveal essential residues within the motif allowing us to define a new type of PDZ domain interaction.  相似文献   

15.
Neuronal nitric oxide synthase (nNOS) is targeted to the cell membrane via interactions of its extended PDZ domain with PDZ domains of membrane-associated proteins including PSD-95 and alpha1-syntrophin. The formation of heterodimers between the nNOS PDZ domain and the PDZ domains of nNOS-binding proteins requires a stretch of continuous amino-acid residues C-terminal to the canonical nNOS PDZ domain. In this work, we show that a 27-residue peptide comprising the C-terminal extension of the extended nNOS PDZ domain is capable of binding to PSD-95. The structure of the 27-residue peptide in aqueous solution was determined using multidimensional NMR-spectroscopic techniques. The free peptide adopts a native-like beta-hairpin finger structure in aqueous solution. The results indicate that the C-terminal extension peptide of the nNOS PDZ domain may represent a relatively independent structural unit in the mediation of the interaction between nNOS and PDZ domain-containing proteins including PSD-95 and alpha1-syntrophin.  相似文献   

16.
PDZ domains are modular protein units that play important roles in organizing signal transduction complexes. PDZ domains mediate interactions with both C-terminal peptide ligands and other PDZ domains. Here, we used PDZ domains from neuronal nitric oxide synthase (nNOS) and postsynaptic density protein-95 (PSD-95) to explore the mechanism for PDZ-dimer formation. The nNOS PDZ domain terminates with a approximately 30 residue amino acid beta-finger peptide that is shown to be required for nNOS/PSD-95 PDZ dimer formation. In addition, formation of the PDZ dimer requires this beta-finger peptide to be physically anchored to the main body of the canonical nNOS PDZ domain. A buried salt bridge between the beta-finger and the PDZ domain induces and stabilizes the beta-hairpin structure of the nNOS PDZ domain. In apo-nNOS, the beta-finger peptide is partially flexible and adopts a transient beta-strand like structure that is stabilized upon PDZ dimer formation. The flexibility of the NOS PDZ beta-finger is likely to play a critical role in supporting the formation of nNOS/PSD-95 complex. The experimental data also suggest that nNOS PDZ and the second PDZ domain of PSD-95 form a "head-to-tail" dimer similar to the nNOS/syntrophin complex characterized by X-ray crystallography.  相似文献   

17.
In resting human neuronal cells, nitric oxide synthase (nNOS) is present in its native 160 kDa form in a quiescent state predominantly co-localized on the plasma membrane, via its PDZ (Psd-95/Discs-large/Zona Occludens) domain, with NMDA receptor (NMDA-R) and in tight association with heat shock protein 90 (HSP90). Following exposure of the cells to Ca2+-ionophore or to NMDA, nNOS undergoes proteolytic removal of the PDZ domain being converted into a fully active 130 kDa form. The newly generated nNO synthase form dissociates from NMDA-R and extensively diffuses into the cytosol in direct correlation with NO production. Intracellular redistribution and activation of nNOS are completely prevented in cells preloaded with calpain inhibitor-1, indicating that these processes are triggered by a concomitant activation of calpain. The role of calpain has been confirmed by immunoprecipitation experiments revealing that also μ-calpain is specifically recruited into the NMDA-R-nNOS-HSP90 complex following calcium loading. Thus, the formation of clusters containing HSP90, μ-calpain, nNOS and NMDA-R represents the limiting step for the operation of the mechanism that links an efficient synthesis of NO to a local increase in Ca2+ influx.  相似文献   

18.
Energetic determinants of internal motif recognition by PDZ domains   总被引:5,自引:0,他引:5  
Harris BZ  Hillier BJ  Lim WA 《Biochemistry》2001,40(20):5921-5930
PDZ domains are protein-protein interaction modules that organize intracellular signaling complexes. Most PDZ domains recognize specific peptide motifs followed by a required COOH-terminus. However, several PDZ domains have been found which recognize specific internal peptide motifs. The best characterized example is the syntrophin PDZ domain which, in addition to binding peptide ligands with the consensus sequence -E-S/T-X-V-COOH, also binds the neuronal nitric oxide synthase (nNOS) PDZ domain in a manner that does not depend on its precise COOH-terminal sequence. In the structure of the syntrophin-nNOS PDZ heterodimer complex, the two PDZ domains interact in a head-to-tail fashion, with an internal sequence from the nNOS PDZ domain binding precisely at the peptide binding groove of the syntrophin PDZ domain. To understand the energetic basis of this alternative mode of PDZ recognition, we have undertaken an extensive mutagenic and biophysical analysis of the nNOS PDZ domain and its interaction with the syntrophin PDZ domain. Our data indicate that the presentation of the nNOS internal motif within the context of a rigid beta-hairpin conformation is absolutely essential to binding; amino acids crucial to the structural integrity of the hairpin are as important or more important than residues that make direct contacts. The results reveal the general rules of PDZ recognition of diverse ligand types.  相似文献   

19.
The animal cell polarity regulator Par-3 recruits the Par complex (consisting of Par-6 and atypical PKC, aPKC) to specific sites on the cell membrane. Although numerous physical interactions have been reported between Par-3 and the Par complex, it is unclear how each of these interactions contributes to the overall binding. Using a purified, intact Par complex and a quantitative binding assay, here, we found that the energy required for this interaction is provided by the second and third PDZ protein interaction domains of Par-3. We show that both Par-3 PDZ domains bind to the PDZ-binding motif of aPKC in the Par complex, with additional binding energy contributed from the adjacent catalytic domain of aPKC. In addition to highlighting the role of Par-3 PDZ domain interactions with the aPKC kinase domain and PDZ-binding motif in stabilizing Par-3–Par complex assembly, our results indicate that each Par-3 molecule can potentially recruit two Par complexes to the membrane during cell polarization. These results provide new insights into the energetic determinants and structural stoichiometry of the Par-3–Par complex assembly.  相似文献   

20.
The T-cell lymphoma invasion and metastasis gene 1 (Tiam1) is a guanine exchange factor (GEF) for the Rho-family GTPase Rac1 that is crucial for the integrity of adherens junctions, tight junctions, and cell-matrix interactions. This GEF contains several protein-protein interaction domains, including a PDZ domain. Earlier studies identified a consensus PDZ-binding motif and a synthetic peptide capable of binding to the Tiam1 PDZ domain, but little is known about its ligand specificity and physiological role in cells. Here, we investigated the structure, specificity, and function of the Tiam1 PDZ domain. We determined the crystal structures of the Tiam1 PDZ domain free and in complex with a “model” peptide, which revealed the structural basis for ligand specificity. Protein database searches using the consensus PDZ-binding motif identified two eukaryotic cell adhesion proteins, Syndecan1 and Caspr4, as potential Tiam1 PDZ domain binding proteins. Equilibrium binding experiments confirmed that C-terminal peptides derived from Syndecan1 and Caspr4 bound the Tiam1 PDZ domain. NMR chemical shift perturbation experiments indicated that the Tiam1 PDZ/Syndecan1 and PDZ/Caspr4 complexes were structurally distinct and identified key residues likely to be responsible for ligand selectivity. Moreover, cell biological analysis established that Syndecan1 is a physiological binding partner of Tiam1 and that the PDZ domain has a function in cell-matrix adhesion and cell migration. Collectively, our data provide insight into the structure, specificity, and function of the Tiam1 PDZ domain. Importantly, our data report on a physiological role for the Tiam1 PDZ domain and establish a novel link between two previously unrelated signal transduction pathways, both of which are implicated in cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号