首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Journal of Asia》2020,23(3):646-652
Anoplophora glabripennis (Motschulsky) (Coleoptera: Cerambycidae), a global forest pest, has a potential to damage forests in South Korea, requiring an effective tool for evaluating its potential distribution. This study aimed to evaluate the spatial distribution of A. glabripennis in South Korea by simultaneously considering climate and host plants. Climatic suitability was firstly evaluated using a CLIMEX model; then, it was combined with the areal distribution of host plants using a simple mathematical formulation. We finally projected the spatial distribution of A. glabripennis onto the map of administrative districts to identify hazardous areas to watch. As a result, the developed model predicted that over 40% of areas in South Korea could be exposed to A. glabripennis damage, and most of them were located in mountainous areas with abundant host plants. In addition, climatic suitability was higher in coastal areas, which was different than a previous record of A. glabripennis occurrence, while the prediction by a comprehensive model was consistent with the record. In conclusion, the model including both climate and host plant occurrence was more reliable than the model which only included climate, and could provide useful data for determining areas for monitoring and control.  相似文献   

2.
Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae), known as common cutworm, is a worldwide pest that causes severe damage to various crops and vegetables in South Korea. In this study, we predicted the potential distribution of S. litura in South Korea in a climate change scenario by applying species distribution modeling. We used the CLIMEX software as a main tool and determined optimal parameter values to simulate the current distribution of S. litura in Asia. We then used these parameter values to predict the species' future distribution in South Korea. As a result, we prepared maps indicating areas with suitable climate for S. litura and showed that these areas gradually increased as a result of climate change. Approximately 98% of the areas in South Korea were predicted to have a favorable climate for S. litura in 2100; 63.2% of the area in South Korea is currently favorable. To the best of our knowledge, this is the first study to predict the potential distribution of S. litura in South Korea, and it provides the basic data necessary to establish an optimal control strategy of this species.  相似文献   

3.
《Journal of Asia》2020,23(3):797-808
The global climate change has led to the distribution of Bactrocera dorsalis from its origin in Southeast Asia to mainland China, which is situated at latitudes similar to Jeju Island, South Korea. In order to evaluate the establishment of B. dorsalis in Korea, it is necessary to determine the climate suitability. When the parameters of CLIMEX model were adjusted to include Wuhan region in China as the northern limit, the model outputs explained well the distribution and occurrence characteristics (namely the annual number of generations) of B. dorsalis in major distribution regions in the world. In IPCC/RCP 8.5 scenario, the establishment of B. dorsalis was suitable to a small part of Jeju Island in the 2010s. The range might gradually spread until the 2090s, with many parts of the lowlands of Jeju Island being marginal to optimal in suitability. The present CLIMEX model with parameters that adjusted to known northern limit will be useful for annual risk mapping to facilitate a monitoring system for early detection of a possible founder population of B. dorsalis in Jeju, South Korea.  相似文献   

4.
The longhorn crazy ant (Paratrechina longicornis) is a globally distributed ant species with a high invasion risk, suggesting the need to use species distribution modeling to evaluate its potential distribution. Therefore, this study aimed to predict the potential distribution of longhorn crazy ants in response to climate change by using CLIMEX and Maxent and identifying the climatic factors that influence their habitat. Then, the model outcomes were used to construct an ensemble map to evaluate invasion risk in South Korea. The results indicated that temperature-related variables mainly affect the distribution of the longhorn crazy ant, and the two models showed consensus regions in South America, Africa, Australia, and Southeast Asia. Due to climate change, it was expected that the northern limit would somewhat rise. In South Korea, high-risk areas were predicted to be located along the coasts, but they would expand as a consequence of climate change. Since the invasion of longhorn crazy ants has occurred via commercial trades, a relatively high risk in coastal areas demands a high level of attention. We expect that this study will provide initial insight into selecting areas for longhorn crazy ant quarantine with ensemble species distribution modeling.  相似文献   

5.
Understanding the drivers of habitat distribution patterns and assessing habitat connectivity are crucial for conservation in the face of climate change. In this study, we examined a sparsely distributed tree species, Kalopanax septemlobus (Araliaceae), which has been heavily disturbed by human use in temperate forests of South Korea. We used maximum entropy distribution modeling (MaxEnt) to identify the climatic and topographic factors driving the distribution of the species. Then, we constructed habitat models under current and projected climate conditions for the year 2050 and evaluated changes in the extent and connectivity of the K. septemlobus habitat. Annual mean temperature and terrain slope were the two most important predictors of species distribution. Our models predicted the range shift of K. septemlobus toward higher elevations under medium-low and high emissions scenarios for 2050, with dramatic reductions in suitable habitat (51% and 85%, respectively). In addition, connectivity analysis indicated that climate change is expected to reduce future levels of habitat connectivity. Even under the Representative Construction Pathway (RCP) 4.5 medium-low warming scenario, the projected climate conditions will decrease habitat connectivity by 78%. Overall, suitable habitats for K. septemlobus populations will likely become more isolated depending on the severity of global warming. The approach presented here can be used to efficiently assess species and habitat vulnerability to climate change.  相似文献   

6.
Climate change is likely to have major impacts on the distribution of planted and natural forests. Herein, we demonstrate how a process‐based niche model (CLIMEX) can be extended to globally project the potential habitat suitable for Douglas‐fir. Within this distribution, we use CLIMEX to predict abundance of the pathogen P haeocryptopus gaeumannii and severity of its associated foliage disease, Swiss needle cast. The distribution and severity of the disease, which can strongly reduce growth rate of Douglas‐fir, is closely correlated with seasonal temperatures and precipitation. This model is used to project how climate change during the 2080s may alter the area suitable for Douglas‐fir plantations within New Zealand. The climate change scenarios used indicate that the land area suitable for Douglas‐fir production in the North Island will be reduced markedly from near 100% under current climate to 36–64% of the total land area by 2080s. Within areas shown to be suitable for the host in the North Island, four of the six climate change scenarios predict substantial increases in disease severity that will make these regions at best marginal for Douglas‐fir by the 2080s. In contrast, most regions in the South Island are projected to sustain relatively low levels of disease, and remain suitable for Douglas‐fir under climate change over the course of this century.  相似文献   

7.
Climate is changing and, as a consequence, some areas that are climatically suitable for date palm (Phoenix dactylifera L.) cultivation at the present time will become unsuitable in the future. In contrast, some areas that are unsuitable under the current climate will become suitable in the future. Consequently, countries that are dependent on date fruit export will experience economic decline, while other countries’ economies could improve. Knowledge of the likely potential distribution of this economically important crop under current and future climate scenarios will be useful in planning better strategies to manage such issues. This study used CLIMEX to estimate potential date palm distribution under current and future climate models by using one emission scenario (A2) with two different global climate models (GCMs), CSIRO-Mk3.0 (CS) and MIROC-H (MR). The results indicate that in North Africa, many areas with a suitable climate for this species are projected to become climatically unsuitable by 2100. In North and South America, locations such as south-eastern Bolivia and northern Venezuela will become climatically more suitable. By 2070, Saudi Arabia, Iraq and western Iran are projected to have a reduction in climate suitability. The results indicate that cold and dry stresses will play an important role in date palm distribution in the future. These results can inform strategic planning by government and agricultural organizations by identifying new areas in which to cultivate this economically important crop in the future and those areas that will need greater attention due to becoming marginal regions for continued date palm cultivation.  相似文献   

8.
Thick‐billed Parrots (Rhynchopsitta pachyrhyncha) and Maroon‐fronted Parrots (Rhynchopsitta terrisi) are the only parrots in Mexico found in high‐elevation coniferous forests. Both species are critically endangered due to logging, and climate change is expected to further reduce their available habitat. Our objectives were to assess the present and future availability of a suitable habitat for these parrots using ecological niche models. Future climatic scenarios were estimated by overlaying the present distributions of these parrots on maps of projected biome distributions generated using a North American vegetation model. Our climatic scenarios revealed that the distribution of key habitats for both parrots will likely be affected as the climate becomes more suitable for xeric biomes. The climate associated with coniferous forests in the current range of Maroon‐fronted Parrots is predicted to disappear by 2090, and the climate associated with the key coniferous habitats of Thick‐billed Parrots may contract. However, our results also indicate that suitable climatic conditions will prevail for the high‐elevation coniferous biomes where Thick‐billed Parrots nest. The degree to which both species of parrots will be able to adapt to the new scenarios is uncertain. Some of their life history traits may allow them to respond with a combination of adaptive and spatial responses to climatic change and, in addition, suitable climatic conditions will prevail in some portions of their ranges. Actions needed to ensure the conservation of these parrots include strict control of logging and integration of rapid response teams for fire management within the potential foraging ranges of nesting pairs. A landscape with a greater proportion of restored forests would also aid in the recovery of current populations of Thick‐billed and Maroon‐fronted parrots and facilitate their responses to climate change.  相似文献   

9.
Thrips palmi Karny, melon thrips was introduced and first recorded in 1993 in Korea. This species has become a serious pest of vegetable and ornamental crops. The CLIMEX simulation was applied to T. palmi to predict its potential geographic distribution in Korea under the Representative Concentration Pathway (RCP) 8.5 climate change scenario. In the CLIMEX simulation, the ecoclimatic index was calculated, and compared in each simulated year and each simulated location. The map comparisons show good agreements between simulated and present distributions of T. palmi, indicating that the CLIMEX model has promising potential for prediction of future distributions of this species in Korea. In the near future, until the year 2020, all the western and eastern parts of Korea show favorable to marginal suitability for T. palmi populations in the fields. After the year 2040, potential distributions shift from no persistence to favorable for establishment and persistence from coastal to interior regions of the Korean peninsula, except for a north‐eastern interior region which is the northernmost part of a high mountainous (Baekdu‐Daegan) area in Korea. Based on the simulation results, the geographical distribution of T. palmi will expand over its current weather restrictions in the near future under a severe climate change scenario. Thus, pest management measures and strategies should be re‐evaluated in Korea, and should include further studies on interspecific competition and ecosystem changes due to climate changes.  相似文献   

10.
The significant dependence of agricultural productivity on pest control requires pest distribution predictions at an early stage of pest invasion. Because pest cycles are critically affected by climate, climate is one of the most important factors for predicting an invasive pest. CLIMEX is a highly effective tool that can predict potential geographical species distributions, and test the regional suitability for a target species' habitat based on data including climate change scenarios. CLIMEX has been recently used in Europe, North America, China and Australia, among others. However, for modeling species distributions in Korea, the use of the model has been limited to date. This study aimed to first introduce the function and application of CLIMEX by reviewing important studies using this model. Second, we investigated previous studies using the model simulation to demonstrate the practical applicability of CLIMEX for the agricultural sector, and its use in forecasting.  相似文献   

11.
Taylor S  Kumar L  Reid N  Kriticos DJ 《PloS one》2012,7(4):e35565
The threat posed by invasive species, in particular weeds, to biodiversity may be exacerbated by climate change. Lantana camara L. (lantana) is a woody shrub that is highly invasive in many countries of the world. It has a profound economic and environmental impact worldwide, including Australia. Knowledge of the likely potential distribution of this invasive species under current and future climate will be useful in planning better strategies to manage the invasion. A process-oriented niche model of L. camara was developed using CLIMEX to estimate its potential distribution under current and future climate scenarios. The model was calibrated using data from several knowledge domains, including phenological observations and geographic distribution records. The potential distribution of lantana under historical climate exceeded the current distribution in some areas of the world, notably Africa and Asia. Under future scenarios, the climatically suitable areas for L. camara globally were projected to contract. However, some areas were identified in North Africa, Europe and Australia that may become climatically suitable under future climates. In South Africa and China, its potential distribution could expand further inland. These results can inform strategic planning by biosecurity agencies, identifying areas to target for eradication or containment. Distribution maps of risk of potential invasion can be useful tools in public awareness campaigns, especially in countries that have been identified as becoming climatically suitable for L. camara under the future climate scenarios.  相似文献   

12.
We modelled the ecoclimatic niche of Culicoides imicola, a major arthropod vector of midge-borne viral pathogens affecting ruminants and equids, at fine scale and on a global extent, so as to provide insight into current and future risks of disease epizootics, and increase current knowledge of the species'' ecology. Based on the known distribution and ecology of C. imicola, the species'' response to monthly climatic conditions was characterised using CLIMEX with 10′ spatial resolution climatic datasets. The species'' climatic niche was projected worldwide and under future climatic scenarios. The validated model highlights the role of irrigation in supporting the occurrence of C. imicola in arid regions. In Europe, the modelled potential distribution of C. imicola extended further West than its reported distribution, raising questions regarding ongoing process of colonization and non-climatic habitat factors. The CLIMEX model highlighted similar ecological niches for C. imicola and the Australasian C. brevitarsis raising questions on biogeography and biosecurity. Under the climate change scenarios considered, its'' modelled potential distribution could expand northward in the Northern hemisphere, whereas in Africa its range may contract in the future. The biosecurity risks from bluetongue and African horse sickness viruses need to be re-evaluated in regions where the vector''s niche is suitable. Under a warmer climate, the risk of vector-borne epizootic pathogens such as bluetongue and African horse sickness viruses are likely to increase as the climate suitability for C. imicola shifts poleward, especially in Western Europe.  相似文献   

13.
Harmonia axyridis (Pallas, 1773) (Coleoptera: Coccinellidae) is a ladybird beetle native to temperate and subtropical parts of Asia. Since 1916 populations of this species have been introduced throughout the world, either deliberately, or by accident through international transport. Harmonia axyridis was originally released as a classical biological control agent of aphid and coccid pests in orchards and forests, but since 1994 it is also available as a commercial product for augmentative control in field and greenhouse crops. It is a very voracious and effective natural enemy of aphids, psyllids and coccids in various agricultural and horticultural habitats and forests. During the past 20 years, however, it has successfully invaded non-target habitats in North America (since 1988), Europe (1999) and South America (2001) respectively in a short period of time, attacking a wide range of non-pest species in different insect orders. Becoming part of the agricultural commercial pathway, it is prone to being introduced into large areas across the world by accident. We use the CLIMEX programme (v2) to predict the potential geographical distribution of H. axyridis by means of matching the climate of its region of origin with other regions in the world and taking in account biological characteristics of the species. Establishment and spread seem likely in many regions across the world, including those areas which H. axyridis has already invaded (temperate Europe, North America). Based on the CLIMEX prediction a large part of Mediterranean Europe, South America, Africa, Australia and New Zealand seem highly suitable for long-term survival of H. axyridis as well. In addition we evaluate CLIMEX as a strategic tool for estimating establishment potential as part of an environmental risk assessment procedure for biological control agents we discuss biological and ecological aspects necessary to fine-tune its establishment and spread in areas after it has been introduced.  相似文献   

14.
As the primary pest of palm trees, Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae) has caused serious harm to palms since it first invaded China. The present study used CLIMEX 1.1 to predict the potential distribution of R. ferrugineus in China according to both current climate data (1981–2010) and future climate warming estimates based on simulated climate data for the 2020s (2011–2040) provided by the Tyndall Center for Climate Change Research (TYN SC 2.0). Additionally, the Ecoclimatic Index (EI) values calculated for different climatic conditions (current and future, as simulated by the B2 scenario) were compared. Areas with a suitable climate for R. ferrugineus distribution were located primarily in central China according to the current climate data, with the northern boundary of the distribution reaching to 40.1°N and including Tibet, north Sichuan, central Shaanxi, south Shanxi, and east Hebei. There was little difference in the potential distribution predicted by the four emission scenarios according to future climate warming estimates. The primary prediction under future climate warming models was that, compared with the current climate model, the number of highly favorable habitats would increase significantly and expand into northern China, whereas the number of both favorable and marginally favorable habitats would decrease. Contrast analysis of EI values suggested that climate change and the density of site distribution were the main effectors of the changes in EI values. These results will help to improve control measures, prevent the spread of this pest, and revise the targeted quarantine areas.  相似文献   

15.
The oriental fruit fly, Bactrocera dorsalis (Hendel), is a major pest throughout South East Asia and in a number of Pacific Islands. As a result of their widespread distribution, pest status, invasive ability and potential impact on market access, B. dorsalis and many other fruit fly species are considered major threats to many countries. CLIMEX was used to model the potential global distribution of B. dorsalis under current and future climate scenarios. Under current climatic conditions, its projected potential distribution includes much of the tropics and subtropics and extends into warm temperate areas such as southern Mediterranean Europe. The model projects optimal climatic conditions for B. dorsalis in the south-eastern USA, where the principle range-limiting factor is likely to be cold stress. As a result of climate change, the potential global range for B. dorsalis is projected to extend further polewards as cold stress boundaries recede. However, the potential range contracts in areas where precipitation is projected to decrease substantially. The significant increases in the potential distribution of B. dorsalis projected under the climate change scenarios suggest that the World Trade Organization should allow biosecurity authorities to consider the effects of climate change when undertaking pest risk assessments. One of the most significant areas of uncertainty in climate change concerns the greenhouse gas emissions scenarios. Results are provided that span the range of standard Intergovernmental Panel on Climate Change scenarios. The impact on the projected distribution of B. dorsalis is striking, but affects the relative abundance of the fly within the total suitable range more than the total area of climatically suitable habitat.  相似文献   

16.
Accurately predicting the future distribution of species is crucial for understanding how species will response to global environmental change and for evaluating the effectiveness of current protected areas (PAs). Here, we assessed the effect of climate and land use change on the projected suitable habitats of Davidia involucrata Baill under different future scenarios using the following two types of models: (a) only climate covariates (climate SDMs) and (b) climate and land use covariates (full SDMs). We found that full SDMs perform significantly better than climate SDMs in terms of both AUC (p < .001) and TSS (p < .001) and also projected more suitable habitat than climate SDMs both in the whole study area and in its current suitable range, although D. involucrate is predicted to loss at least 26.96% of its suitable area under all future scenarios. Similarly, we found that these range contractions projected by climate SDMs would negate the effectiveness of current PAs to a greater extent relative to full SDMs. These results suggest that although D. involucrate is extremely vulnerability to future climate change, conservation intervention to manage habitat may be an effective option to offset some of the negative effects of a changing climate on D. involucrate and can improve the effectiveness of current PAs. Overall, this study highlights the necessity of integrating climate and land use change to project the future distribution of species.  相似文献   

17.
Bactrocera zonata (Saunders) is one of the most harmful species of Tephritidae. It causes extensive damage in Asia and threatens many countries located along or near the Mediterranean Sea. The climate mapping program, CLIMEX 3.0, and the GIS software, ArcGIS 9.3, were used to model the current and future potential geographical distribution of B. zonata. The model predicts that, under current climatic conditions, B. zonata will be able to establish itself throughout much of the tropics and subtropics, including some parts of the USA, southern China, southeastern Australia and northern New Zealand. Climate change scenarios for the 2070s indicate that the potential distribution of B. zonata will expand poleward into areas which are currently too cold. The main factors limiting the pest's range expansion are cold, hot and dry stress. The model's predictions of the numbers of generations produced annually by B. zonata were consistent with values previously recorded for the pest's occurrence in Egypt. The ROC curve and the AUC (an AUC of 0.912) were obtained to evaluate the performance of the CLIMEX model in this study. The analysis of this information indicated a high degree of accuracy for the CLIMEX model. The significant increases in the potential distribution of B. zonata projected under the climate change scenarios considered in this study suggest that biosecurity authorities should consider the effects of climate change when undertaking pest risk assessments. To prevent the introduction and spread of B. zonata, enhanced quarantine and monitoring measures should be implemented in areas that are projected to be suitable for the establishment of the pest under current and future climatic conditions.  相似文献   

18.
  1. The Asian longhorned beetle (ALB) Anoplophora glabripennis (Motschulsky) (Coleoptera: Cerambycidae) is an important wood-boring pest that has caused substantial damage to broadleaf trees in Asia, North America, and Europe.
  2. We used the modelling software CLIMEX to project the potential global distribution of ALB based on both historical (1987–2016) and future (2021–2050) climate conditions. ALB has possible hosts in 37 genera, and their known distributions were incorporated into the model to assess their effect on pest distribution.
  3. Suitable regions for ALB are predicted to be widely distributed under both historical and future climate conditions, and across all continents except Antarctica. With climate change, climate suitability would increase in the regions north of 30°N and decline in most regions south of 30°N.
  4. The area of most climate-suitable regions would be covered by potential hosts, and optimum hosts would dominate. The possibility of ALB outbreaks in the Northern Hemisphere is much higher than in the Southern Hemisphere, owing to the richer abundance of hosts.
  5. These results provide theoretical guidance for developing effective ALB monitoring and mitigation measures.
  相似文献   

19.
Increasing air temperatures and changing precipitation patterns due to climate change can affect tree growth in boreal forests. Periodic insect outbreaks affect the growth trajectory of trees, making it difficult to quantify the climate signal in growth dynamics at scales longer than a year. We studied climate‐driven growth trends and the influence of spruce budworm (Choristoneura fumiferana Clem.) outbreaks on these trends by analyzing the basal area increment (BAI) of 2058 trees of Abies balsamea (L.) Mill., Picea glauca (Moench) Voss, Thuja occidentalis L., Populus tremuloides Michx., and Betula papyrifera Marsh, which co‐occurs in the boreal mixedwood forests of western Quebec. We used a generalized additive mixed model (GAMM) to analyze species‐specific trends in BAI dynamics from 1967 to 1991. The model relied on tree size, cambial age, degree of spruce budworm defoliation, and seasonal climatic variables. Overall, we observed a decreasing growth rate of the spruce budworm host species, A. balsamea and P. glauca between 1967 and 1991, and an increasing growth rate for the non‐host, P. tremuloides, B. papyrifera, and T. occidentalis. Our results suggest that insect outbreaks may offset growth increases resulting from a warmer climate. The observation warrants the inclusion of the spruce budworm defoliation into models predicting future forest productivity.  相似文献   

20.
Based on body appearance and COI gene sequence, we report a leaf-footed bug, Leptoglossus occidentalis (Hemiptera: Coreidae), for the first time from Korea. The bug was first encountered in Changwon-si, Gyeongsangnam-do, Korea in 2010, and then again in 2011. We should be alert against the species, because it is an important pest of Pinaceae in Europe. Explanations on its brief morphology and photographs are provided. The worldwide distribution and life history of the bug, and its damage symptom are introduced briefly herein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号