共查询到20条相似文献,搜索用时 0 毫秒
1.
Yuka Keyamura Chifumi Nagano Masayuki Kohashi Manabu Niimi Masanori Nozako Takashi Koyama Reiko Yasufuku Ayako Imaizumi Hiroyuki Itabe Tomohiro Yoshikawa 《PloS one》2014,9(5)
Objective
Lowering the blood concentration of low-density lipoprotein (LDL) cholesterol is the primary strategy employed in treating atherosclerotic disorders; however, most commonly prescribed statins prevent cardiovascular events in just 30% to 40% of treated patients. Therefore, additional treatment is required for patients in whom statins have been ineffective. In this study of atherosclerosis in rabbits, we examined the effect of probucol, a lipid-lowering drug with potent antioxidative effects, added to treatment with atorvastatin.Methods and Results
Atherosclerosis was induced by feeding rabbits chow containing 0.5% cholesterol for 8 weeks. Probucol 0.1%, atorvastatin 0.001%, and atorvastatin 0.003% were administered solely or in combination for 6 weeks, beginning 2 weeks after the start of atherosclerosis induction. Atorvastatin decreased the plasma concentration of non-high-density lipoprotein cholesterol (non-HDLC) dose-dependently; atorvastatin 0.003% decreased the plasma concentration of non-HDLC by 25% and the area of atherosclerotic lesions by 21%. Probucol decreased the plasma concentration of non-HDLC to the same extent as atorvastatin (i.e., by 22%) and the area of atherosclerotic lesions by 41%. Probucol with 0.003% atorvastatin decreased the plasma concentration of non-HDLC by 38% and the area of atherosclerotic lesions by 61%. Co-administration of probucol with atorvastatin did not affect the antioxidative effects of probucol, which were not evident on treatment with atorvastatin alone, such as prevention of in vitro LDL-oxidation, increase in paraoxonase-1 activity of HDL, and decreases in plasma and plaque levels of oxidized-LDL in vivo.Conclusions
Probucol has significant add-on anti-atherosclerotic effects when combined with atorvastatin treatment; suggesting that this combination might be beneficial for treatment of atherosclerosis. 相似文献2.
3.
Urotensin II, through its interaction with its UT receptor, is a potent vasoactive peptide in humans and in several animal models. Recent studies have demonstrated elevated plasma U-II levels in patients with atherosclerosis and coronary artery disease. U-II is expressed in endothelial cells, smooth muscle cells and infiltrating macrophages of atherosclerotic human coronary arteries. UT receptor expression is up-regulated by inflammatory stimuli. Activation of UT receptor by U-II stimulates endothelial and smooth muscle cell proliferation and monocytes chemotaxis. Therefore, in addition to its primary vasoactive effect, these observations suggest a role of U-II and UT receptor in the initiation and/or progression of atherosclerosis. 相似文献
4.
Urotensin II (UII) has been found to be a potent vasoactive peptide in humans and in a number of relevant animal models of cardiovascular disease such as the mouse, rat and other non-human primates. This peptide with structural homology to somatostatin was first isolated from the urophysis of fish and was recently found to bind to an orphan receptor in mouse and human. Initially found to have potent vasoconstrictive activities in a variety of vessels from diverse species, it has also been shown to exert vasodilatation in certain vessels in the rat and human by various endothelium-dependent mechanisms. The various vasoactive properties of UII suggest that the peptide may have a physiological role in maintaining vascular tone and therefore may have a role in the pathophysiology of a number of human diseases such as heart failure. Moreover, UII has also been implicated as a mitogen of vascular smooth muscle cells suggesting a deleterious role in atherosclerosis and coronary artery disease. In addition, there is evidence to demonstrate that UII has multiple metabolic effects on cholesterol metabolism, glycemic control and hypertension and therefore may be implicated in the development of insulin resistance and the metabolic syndrome. 相似文献
5.
Urotensin II is a peptide present, together with its receptor, in the central nervous system and many peripheral tissues (including heart, blood vessels, kidneys and endocrine organs) of many species. The bioactive, mature form contains a cyclic heptapeptide perfectly preserved across species spanning 550 million years of evolution Its biological activity has been explored in cultured cells, in isolated vessels from several species, in the isolated perfused heart and in intact animals and man. Initial demonstration of potent vasoconstriction and cardiac depression by the human isoform in non-human primates has been followed by a series of reports indicating potent but highly variable and generally modest vascular responses dependent on species and vascular region. In man short term cardiovascular responses to administered urotensin II are small or absent. The place of urotensin II in the chronic trophic responses to cardiac and vascular injury and its possible roles as a neurotransmitter and/or regulator of renal and endocrine function remain largely unexplored. 相似文献
6.
目前应用转基因和基因敲除小鼠的研究工作几乎成为各种国际高水平学术刊物的主流,而基因改造的家兔由于其独有的特点,在心血管研究中占有重要地位。本文从基因改造小鼠的最新研究进展着手,分析了基因修饰小鼠在动脉粥样硬化研究中的局限性,进而阐明基因改造家兔用于动脉粥样研究的优越性及研究近况。文章分析表明基因改造家兔技术及其应用必将在生物医学研究中发挥重要作用。 相似文献
7.
8.
Chao Fang Bo Ning Ahmed Bilal Waqar Manabu Niimi Shen Li Kaneo Satoh Masashi Shiomi Ting Ye Sijun Dong Jianglin Fan 《PloS one》2014,9(10)
Bisphenol A (BPA) is an environmental endocrine disrupter. Excess exposure to BPA may increase susceptibility to many metabolic disorders, but it is unclear whether BPA exposure has any adverse effects on the development of atherosclerosis. To determine whether there are such effects, we investigated the response of Watanabe heritable hyperlipidemic (WHHL) rabbits to 400-µg/kg BPA per day, administered orally by gavage, over the course of 12 weeks and compared aortic and coronary atherosclerosis in these rabbits to the vehicle group using histological and morphometric methods. In addition, serum BPA, cytokines levels and plasma lipids as well as pathologic changes in liver, adipose and heart were analyzed. Moreover, we treated human umbilical cord vein endothelial cells (HUVECs) and rabbit aortic smooth muscle cells (SMCs) with different doses of BPA to investigate the underlying molecular mechanisms involved in BPA action(s). BPA treatment did not change the plasma lipids and body weights of the WHHL rabbits; however, the gross atherosclerotic lesion area in the aortic arch was increased by 57% compared to the vehicle group. Histological and immunohistochemical analyses revealed marked increases in advanced lesions (37%) accompanied by smooth muscle cells (60%) but no significant changes in the numbers of macrophages. With regard to coronary atherosclerosis, incidents of coronary stenosis increased by 11% and smooth muscle cells increased by 73% compared to the vehicle group. Furthermore, BPA-treated WHHL rabbits showed increased adipose accumulation and hepatic and myocardial injuries accompanied by up-regulation of endoplasmic reticulum (ER) stress and inflammatory and lipid metabolism markers in livers. Treatment with BPA also induced the expression of ER stress and inflammation related genes in cultured HUVECs. These results demonstrate for the first time that BPA exposure may increase susceptibility to atherosclerosis in WHHL rabbits. 相似文献
9.
Urotensin II (UII) is a vasoactive peptide with pleotropic activity. Interestingly, UII levels are elevated in hyperlipidemic patients, and UII induces lipase activity in some species. However, the exact role UII plays in cholesterol homeostasis remains to be elucidated. UII knockout (UII KO) mice were generated and a plasma lipoprotein profile, and hepatocytes and macrophages cholesterol uptake, storage and synthesis was determined. UII KO had a decreased LDL cholesterol profile and liver steatosis compared to wildtype mice (WT). UII KO macrophages demonstrated enhanced ACAT activity and LDL uptake in the short term (up to 4 h), of which more LDL-delivered exogenously derived cholesterol was incorporated into cholesteryl ester (CE) than the WT macrophages. UII KO macrophages generated more than two times the amount of de novo endogenously synthesized cholesterol, and of this cholesterol more than two times the relative amount was esterified to CE. In comparison, results in hepatocytes demonstrated that far more exogenously derived cholesterol was incorporated into CE in the WT cells, generating almost ten times the amount of CE than UII KO. WT cells synthesize de novo almost ten times the amount of cholesterol than UIIKO, and of that cholesterol, almost two times the amount of CE in WT than UII KO hepatocytes. In addition, more ApoB lipoproteins were secreted from WT than UII KO hepatocytes. These results demonstrate a fundamental difference between macrophages and hepatocytes in terms of cholesterol homeostasis, and suggest an important role for UII in modulating cholesterol regulation. 相似文献
10.
11.
Gérard Coureaud Benoist Schaal Pierre Coudert Robyn Hudson Patricia Rideaud & Pierre Orgeur 《Ethology : formerly Zeitschrift fur Tierpsychologie》2000,106(3):207-225
In the wild rabbit, Oryctolagus cuniculus, mother–young relationships are based on restricted, once-per-day nursing interactions. Correspondingly, pups have evolved an efficient strategy of energy saving. Here we investigate under breeding conditions, whether matching or not, the once-daily nursing visit by the rabbit females has an effect on pup survival and growth. Two nursing regimen were applied to 89 primiparous (P) and to 78 multiparous (M) does: (a) one that matched the once daily nursing pattern (closed nest-box during the whole day except for a few minutes devoted to nursing) and (b) one that did not match it (24 h free nest access). In P females, the controlled nest access resulted in lower mortality between birth and weaning (8.1%) as compared to the free nest-access (18%). This effect was recorded from postnatal d 3–4 onwards. Both treatments induced different death causes (starvation (63%) in controlled-access regimen, and wounds and nest-soiling (29%) in free-access regimen). While both experimental nest-access regimens differentially affected pup survival in P or M females, they were without influence on pup growth rate in does of either parity. It is concluded that repeated nest visits by the female increase risks of injury to pups, and of out-of-time pup activation or sucking, and that, more generally, it plays against the ethophysiologigal strategy of biomass conservation evolved by rabbit newborns. The fact that the nest-access regimen no longer affected pup survival from the second parity suggests that the behaviour of multiparous does more adequately models the offspring demands. 相似文献
12.
Urotensin II (UII) is a peptide that was originally isolated and characterized in fish. Interest in its effects in mammals increased with the identification of its receptor, G-protein coupled receptor 14, and its localization in humans. UII and its receptor have a wide distribution, including brain and spinal cord as well as heart, kidney and liver, implying that UII has important physiological actions. Recent studies suggest that UII may play an important role in the central nervous system. In conscious sheep, intracerebroventricular administration of UII induced large, prolonged increases in plasma epinephrine, adrenocorticotropic hormone, cardiac output and arterial pressure. Potent chronotropic and inotropic actions accompanied this, as well as peripheral vasodilatation. Administered intravenously, UII is an extremely potent vasoconstrictor in anesthetized monkeys, but reduces pressure in conscious and anesthetized rats, and causes a transient increase in conscious sheep, however vasomotor responses vary depending on species and vessel type. UII is elevated in conditions such as essential hypertension and heart failure suggesting a role in pathology. The results of studies with UII to date, together with its possible role in disease, emphasize the importance of examining the central and peripheral roles of UII in more detail. 相似文献
13.
Urotensin II induces hypertrophic responses in cultured cardiomyocytes from neonatal rats. 总被引:6,自引:0,他引:6
Urotensin II (UII), a cyclic neuropeptide, functions not only in the central nervous system but also in non-neural systems including cardiovascular systems. In the present study we examined whether UII regulates hypertrophy in cardiomyocytes. The exposure of cultured cardiomyocytes from neonatal rats to UII dose-dependently activated extracellular signal-regulated kinases (ERKs), important molecules in the development of cardiac hypertrophy. ERK activation by UII at 100 nM peaked at 8 min after stimulation. UII markedly induced expression of specific genes encoding atrial natriuretic peptide and brain natriuretic peptide, and significantly increased amino acid incorporation into proteins. Incubation of cardiomyocytes with UII increased cell size and myofibril organisation. UII, then, might participate in cardiomyocyte hypertrophy. 相似文献
14.
15.
Urotensin II: evidence for cardiac, hepatic and renal production 总被引:2,自引:0,他引:2
Although urotensin II (UII) has been reported to circulate in human plasma and be raised in cardiovascular disorders, little, if any, information is available regarding the source of plasma UII. Accordingly, we have performed trans-organ arteriovenous sampling for measurement of UII concentration in anesthetized sheep. Plasma UII levels were measured in the low picomolar range in normal sheep and arterial plasma levels rose steadily with increasing time of anesthesia. Significant arteriovenous gradients were observed across the heart (36%), liver (40%) and kidney (44%). This is the first report to identify the heart, liver and kidney as sources of UII in the circulation. 相似文献
16.
17.
18.
Elena V. Romanova Kosei Sasaki Vera Alexeeva Ferdinand S. Vilim Jian Jing Timothy A. Richmond Klaudiusz R. Weiss Jonathan V. Sweedler 《PloS one》2012,7(11)
Neuropeptides are ancient signaling molecules that are involved in many aspects of organism homeostasis and function. Urotensin II (UII), a peptide with a range of hormonal functions, previously has been reported exclusively in vertebrates. Here, we provide the first direct evidence that UII-like peptides are also present in an invertebrate, specifically, the marine mollusk Aplysia californica. The presence of UII in the central nervous system (CNS) of Aplysia implies a more ancient gene lineage than vertebrates. Using representational difference analysis, we identified an mRNA of a protein precursor that encodes a predicted neuropeptide, we named Aplysia urotensin II (apUII), with a sequence and structural similarity to vertebrate UII. With in-situ hybridization and immunohistochemistry, we mapped the expression of apUII mRNA and its prohormone in the CNS and localized apUII-like immunoreactivity to buccal sensory neurons and cerebral A-cluster neurons. Mass spectrometry performed on individual isolated neurons, and tandem mass spectrometry on fractionated peptide extracts, allowed us to define the posttranslational processing of the apUII neuropeptide precursor and confirm the highly conserved cyclic nature of the mature neuropeptide apUII. Electrophysiological analysis of the central effects of a synthetic apUII suggests it plays a role in satiety and/or aversive signaling in feeding behaviors. Finding the homologue of vertebrate UII in the numerically small CNS of an invertebrate animal model is important for gaining insights into the molecular mechanisms and pathways mediating the bioactivity of UII in the higher metazoan. 相似文献
19.
Urotensin II promotes hypertrophy of cardiac myocytes via mitogen-activated protein kinases 总被引:4,自引:0,他引:4
Onan D Pipolo L Yang E Hannan RD Thomas WG 《Molecular endocrinology (Baltimore, Md.)》2004,18(9):2344-2354
Urotensin II and its receptor are coexpressed in the heart and up-regulated during cardiac dysfunction. In cultured neonatal cardiomyocytes, we mimicked this up-regulation using an adenovirus to increase expression of the urotensin receptor. In this model system, urotensin II promoted strong hypertrophic growth and phenotypic changes, including cell enlargement and sarcomere reorganization. Urotensin II potently activated the MAPKs, ERK1/2 and p38, and blocking these kinases with PD098059 and SB230580, respectively, significantly inhibited urotensin II-mediated hypertrophy. In contrast, urotensin II did not activate JNK. The activation of ERK1/2 and p38 as well as cellular hypertrophy was independent of protein kinase C, and calcium and phosphoinositide 3-kinase, yet dependent on the capacity of the urotensin receptor to trans-activate the epidermal growth factor receptor. Urotensin II promoted the tyrosine phosphorylation of epidermal growth factor receptors, which was inhibited by the selective epidermal growth factor receptor kinase inhibitor, AG1478. These data indicate that perturbations in cardiac homeostasis, which lead to up-regulation of urotensin II receptors, promote urotensin II-mediated cardiomyocyte hypertrophy via ERK1/2 and p38 signaling pathways in an epidermal growth factor receptor-dependent manner. 相似文献
20.
Segain JP Rolli-Derkinderen M Gervois N Raingeard de la Blétière D Loirand G Pacaud P 《Journal of immunology (Baltimore, Md. : 1950)》2007,179(2):901-909
Urotensin II (U-II), a vasoactive cyclic neuropeptide which activates the G protein-coupled receptor UT receptor, exerts various cardiovascular effects and may play a role in the pathophysiology of atherosclerosis. In this study, we report that the UT receptor is expressed and functional on human PBMC and rat splenocytes. PBMC surface expression of the UT receptor was mainly found in monocytes and NK cells, also in a minority of B cells, but not in T cells. Stimulation of monocytes with LPS increased UT receptor mRNA and protein expression. Cloning and functional characterization of the human UT receptor gene promoter revealed the presence of NF-kappaB-binding sites involved in the stimulation of UT receptor gene expression by LPS. Activation of the UT receptor by U-II induced chemotaxis with maximal activity at 10 and 100 nM. This U-II effect was restricted to monocytes. Analysis of the signaling pathway involved indicated that U-II-mediated chemotaxis was related to RhoA and Rho kinase activation and actin cytoskeleton reorganization. The present results thus identify U-II as a chemoattractant for UT receptor-expressing monocytes and indicate a pivotal role of the RhoA-Rho kinase signaling cascade in the chemotaxis induced by U-II. 相似文献