首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reasoners make systematic logical errors by giving heuristic responses that reflect deviations from the logical norm. Influential studies have suggested first that our reasoning is often biased because we minimize cognitive effort to surpass a cognitive conflict between heuristic response from system 1 and analytic response from system 2 thinking. Additionally, cognitive control processes might be necessary to inhibit system 1 responses to activate a system 2 response. Previous studies have shown a significant effect of executive learning (EL) on adults who have transferred knowledge acquired on the Wason selection task (WST) to another isomorphic task, the rule falsification task (RFT). The original paradigm consisted of teaching participants to inhibit a classical matching heuristic that sufficed the first problem and led to significant EL transfer on the second problem. Interestingly, the reasoning tasks differed in inhibiting-heuristic metacognitive cost. Success on the WST requires half-suppression of the matching elements. In contrast, the RFT necessitates a global rejection of the matching elements for a correct answer. Therefore, metacognitive learning difficulty most likely differs depending on whether one uses the first or second task during the learning phase. We aimed to investigate this difficulty and various matching-bias inhibition effects in a new (reversed) paradigm. In this case, the transfer effect from the RFT to the WST could be more difficult because the reasoner learns to reject all matching elements in the first task. We observed that the EL leads to a significant reduction in matching selections on the WST without increasing logical performances. Interestingly, the acquired metacognitive knowledge was too “strictly” transferred and discouraged matching rather than encouraging logic. This finding underlines the complexity of learning transfer and adds new evidence to the pedagogy of reasoning.  相似文献   

2.
The allocation of attention modulates negative emotional processing in the amygdala. However, the role of passive exposure time to emotional signals in the modulation of amygdala activity during active task performance has not been examined. In two functional Magnetic Resonance Imaging (fMRI) experiments conducted in two different groups of healthy human subjects, we examined activation in the amygdala due to cued anticipation of painful stimuli while subjects performed a simple continuous performance task (CPT) with either a fixed or a parametrically varied trial duration. In the first experiment (N = 16), engagement in the CPT during a task with fixed trial duration produced the expected attenuation of amygdala activation, but close analysis suggested that the attenuation occurred during the period of active engagement in CPT, and that amygdala activity increased proportionately during the remainder of each trial, when subjects were passively exposed to the pain cue. In the second experiment (N = 12), the duration of each trial was parametrically varied, and we found that amygdala activation was linearly related to the time of passive exposure to the anticipatory cue. We suggest that amygdala activation during negative anticipatory processing depends directly on the passive exposure time to the negative cue.  相似文献   

3.
The aim of this study was to assess the extent to which Need for Cognitive Closure (NCC), an individual-level epistemic motivation, can explain inter-individual variability in the cognitive effort invested on a perceptual decision making task (the random motion task). High levels of NCC are manifested in a preference for clarity, order and structure and a desire for firm and stable knowledge. The study evaluated how NCC moderates the impact of two variables known to increase the amount of cognitive effort invested on a task, namely task ambiguity (i.e., the difficulty of the perceptual discrimination) and outcome relevance (i.e., the monetary gain associated with a correct discrimination). Based on previous work and current design, we assumed that reaction times (RTs) on our motion discrimination task represent a valid index of effort investment. Task ambiguity was associated with increased cognitive effort in participants with low or medium NCC but, interestingly, it did not affect the RTs of participants with high NCC. A different pattern of association was observed for outcome relevance; high outcome relevance increased cognitive effort in participants with moderate or high NCC, but did not affect the performance of low NCC participants. In summary, the performance of individuals with low NCC was affected by task difficulty but not by outcome relevance, whereas individuals with high NCC were influenced by outcome relevance but not by task difficulty; only participants with medium NCC were affected by both task difficulty and outcome relevance. These results suggest that perceptual decision making is influenced by the interaction between context and NCC.  相似文献   

4.
Despite consistent evidence showing that attention is a multifaceted mechanism that can operate at multiple levels of processing depending on the structure and demands of the task, investigations of the attentional blink phenomenon have consistently shown that the impairment in reporting the second of two targets typically occurs at a late, or post-perceptual, stage of processing. This suggests that the attentional blink phenomenon may represent the operation of a unique attentional mechanism that is not as flexible as other attentional mechanisms. To test whether the attentional blink is a fixed or flexible phenomenon, we manipulated first target task demands (i.e., difficulty) and measured the influence this had on processing a subsequently presented distractor and the second target. If the attentional blink represents a mechanism that is fixed and consistently fails at a single stage of processing, then manipulations of task difficulty should not affect distractor processing. However, if the attentional blink represents a more multifaceted and flexible mechanism, then task difficulty should modulate distractor processing. The results revealed that distractor processing during the AB was attenuated under high task difficulty. In addition, unlike previous studies, we failed to find a correlation between distractor processing and the severity of the attentional blink. Using a simulation, we demonstrate that the previously reported correlations may have been spurious and due to using variables that were not independent. Overall, the present results support the conclusion that the selectivity of attention during the AB is flexible and depends on the structure and demands of the task.  相似文献   

5.
Task switch costs often show an asymmetry, with switch costs being larger when switching from a difficult task to an easier task. This asymmetry has been explained by difficult tasks being represented more strongly and consequently requiring more inhibition prior to switching to the easier task. The present study shows that switch cost asymmetries observed in arithmetic tasks (addition vs. subtraction) do not depend on task difficulty: Switch costs of similar magnitudes were obtained when participants were presented with unsolvable pseudo-equations that did not differ in task difficulty. Further experiments showed that neither task switch costs nor switch cost asymmetries were due to perceptual factors (e.g., perceptual priming effects). These findings suggest that asymmetrical switch costs can be brought about by the association of some tasks with greater difficulty than others. Moreover, the finding that asymmetrical switch costs were observed (1) in the absence of a task switch proper and (2) without differences in task difficulty, suggests that present theories of task switch costs and switch cost asymmetries are in important ways incomplete and need to be modified.  相似文献   

6.
Aim Our study aimed to determine priority areas for conservation investment with explicit consideration of the impacts of multiple threatening processes, and the dependencies that exist between actions required to abate these threats. Location Australia. Methods We analysed the return on investment for two different management actions aimed at reducing the impact of invasive species on the native fauna and flora of Australia. We focussed on the management of the European red fox (Vulpes vulpes) and European rabbit (Oryctolagus cuniculus) at two spatial scales: across 72 biogeographic regions of Australia and within one high‐priority biogeographic region. We considered each action independently and also explicitly accounted for the option of an integrated fox and rabbit management action. We accounted for the spatial distributions of the threatened species within our analysis and determined how this refined spatial information influenced both the priority areas and the timing of this investment. Results Integrated fox and rabbit management was identified as a higher priority than singular threat abatement in most bioregions, whereas rabbit control alone was the most frequent priority if dependencies between actions were ignored. At the regional scale, funding was entirely directed to integrated action when seven or more species within the priority region were impacted by more than one threat. The total allocation of funding and timing of initial investment remained relatively insensitive to differences in the spatial overlap of species distributions. Main conclusions Our findings indicate that prioritizing conservation actions without explicit consideration of the impacts of multiple threats can reduce the cost‐effectiveness of investments. The benefits expected from investment in abating one threat alone may be overestimated where other processes continue to threaten species persistence. We conclude that future attention should be directed to refining our understanding of the cost‐efficiencies delivered through integrated actions and institutional mechanisms to achieve their delivery.  相似文献   

7.
The brain stem noradrenergic nucleus locus coeruleus (LC) is involved in various costly processes: arousal, stress, and attention. Recent work has pointed toward an implication in physical effort, and indirect evidence suggests that the LC could be also involved in cognitive effort. To assess the dynamic relation between LC activity, effort production, and difficulty, we recorded the activity of 193 LC single units in 5 monkeys performing 2 discounting tasks (a delay discounting task and a force discounting task), as well as a simpler target detection task where conditions were matched for difficulty and only differed in terms of sensory-motor processes. First, LC neurons displayed a transient activation both when monkeys initiated an action and when exerting force. Second, the magnitude of the activation scaled with the associated difficulty, and, potentially, the corresponding amount of effort produced, both for decision and force production. Indeed, at action initiation in both discounting tasks, LC activation increased in conditions associated with lower average engagement rate, i.e., those requiring more cognitive control to trigger the response. Decision-related activation also scaled with response time (RT), over and above task parameters, in line with the idea that it reflects the amount of resources (here time) spent on the decision process. During force production, LC activation only scaled with the amount of force produced in the force discounting task, but not in the control target detection task, where subjective difficulty was equivalent across conditions. Our data show that LC neurons dynamically track the amount of effort produced to face both cognitive and physical challenges with a subsecond precision. This works provides key insight into effort processing and the contribution of the noradrenergic system, which is affected in several pathologies where effort is impaired, including Parkinson disease and depression.

Compared to reward, the neural basis of effort remains poorly understood. This study uses neurophysiological recordings in behaving macaques to show that locus coeruleus noradrenergic neurons provide information about both cognitive and physical effort, a few hundred milliseconds after it had been exerted.  相似文献   

8.
In everyday life contexts and work settings, monetary rewards are often contingent on future performance. Based on research showing that the anticipation of rewards causes improved task performance through enhanced task preparation, the present study tested the hypothesis that the promise of monetary rewards for future performance would not only increase future performance, but also performance on an unrewarded intermediate task. Participants performed an auditory Simon task in which they responded to two consecutive tones. While participants could earn high vs. low monetary rewards for fast responses to every second tone, their responses to the first tone were not rewarded. Moreover, we compared performance under conditions in which reward information could prompt strategic performance adjustments (i.e., when reward information was presented for a relatively long duration) to conditions preventing strategic performance adjustments (i.e., when reward information was presented very briefly). Results showed that high (vs. low) rewards sped up both rewarded and intermediate, unrewarded responses, and the effect was independent of the duration of reward presentation. Moreover, long presentation led to a speed-accuracy trade-off for both rewarded and unrewarded tones, whereas short presentation sped up responses to rewarded and unrewarded tones without this trade-off. These results suggest that high rewards for future performance boost intermediate performance due to enhanced task preparation, and they do so regardless whether people respond to rewards in a strategic or non-strategic manner.  相似文献   

9.

Background  

Multiple sequence alignment is fundamental. Exponential growth in computation time appears to be inevitable when an optimal alignment is required for many sequences. Exact costs of optimum alignments are therefore rarely computed. Consequently much effort has been invested in algorithms for alignment that are heuristic, or explore a restricted class of solutions. These give an upper bound on the alignment cost, but it is equally important to determine the quality of the solution obtained. In the absence of an optimal alignment with which to compare, lower bounds may be calculated to assess the quality of the alignment. As more effort is invested in improving upper bounds (alignment algorithms), it is therefore important to improve lower bounds as well. Although numerous cost metrics can be used to determine the quality of an alignment, many are based on sum-of-pairs (SP) measures and their generalizations.  相似文献   

10.
We examined the effects of anticipation, prior-exercise, and restricted breathing frequency on the ventilatory transient response to bicycle step exercise (75 W, 4 min, 50 rpm), i.e., 1) whether the increase of work rate was anticipated by the subject or not, 2) whether the exercise was preceded by light exercise (25 W), or rest, and 3) whether the exercise entrained the breathing frequency (f: 12.5/min, or 25/min) or not (voluntary). The corresponding step-on exercise was randomly performed at least two to five times by one adult male subject. As a result, a) the initial rapid ventilatory component, phase 1, was not observed when initiated from light exercise, whereas the overshot phase 1 was observed from rest in anticipation and voluntary breathing frequency condition due to the rapid increase of tidal volume; b) compared with the anticipation condition, the phase 1 response of VE in the non-anticipation condition was slower with prior-rest, and not with prior-light exercise; and c) the restriction of the breathing frequency for entraining the exercise rhythm did not affect the initial rapid response, but decreased the fluctuation of VE in the steady state, compared to the condition of voluntary breathing frequency.  相似文献   

11.
Leclercq V  Seitz AR 《PloS one》2012,7(4):e36228
Recent research of task-irrelevant perceptual learning (TIPL) demonstrates that stimuli that are consistently presented at relevant point in times (e.g. with task-targets or rewards) are learned, even in the absence of attention to these stimuli. However, different research paradigms have observed different results for how salient stimuli are learned; with some studies showing no learning, some studies showing positive learning and others showing negative learning effects. In this paper we focused on how the level of processing of stimuli impacts fast-TIPL. We conducted three different experiments in which the level of processing of the information paired with a target was manipulated. Our results indicated that fast-TIPL occurs when participants have to memorize the information presented with the target, but also when they just have to process this information for a secondary task without an explicit memorization of those stimuli. However, fast-TIPL does not occur when participants have to ignore the target-paired information. This observation is consistent with recent models of TIPL that suggest that attentional signals can either enhance or suppress learning depending on whether those stimuli are distracting or not to the subjects' objectives. Our results also revealed a robust gender effect in fast-TIPL, where male subjects consistently show fast-TIPL, whereas the observation of fast-TIPL is inconsistent in female subjects.  相似文献   

12.
The use of motor learning strategies may enhance rehabilitation outcomes of individuals with neurological injuries (e.g., stroke or cerebral palsy). A common strategy to facilitate learning of challenging tasks is to use sequential progression – i.e., initially reduce task difficulty and slowly increase task difficulty until the desired difficulty level is reached. However, the evidence related to the use of such sequential progressions to improve learning is mixed for functional skill learning tasks, especially considering situations where practice duration is limited. Here, we studied the benefits of sequential progression using a functional motor learning task that has been previously used in gait rehabilitation. Three groups of participants (N = 43) learned a novel motor task during treadmill walking using different learning strategies. Participants in the specific group (n = 21) practiced only the criterion task (i.e., matching a target template that was scaled-up by 30%) throughout the training. Participants in the sequential group (n = 11) gradually progressed to the criterion task (from 3% to 30% in increments of 3%), whereas participants in the random group (n = 11) started at 3% and progressed in random increments (involving both increases and decreases in task difficulty) to the criterion task. At the end of training, kinematic tracking performance on the criterion task was evaluated in all participants both with and without visual feedback. Results indicated that the tracking error was significantly lower in the specific group, and no differences were observed between the sequential and the random progression groups. The findings indicate that the amount of practice in the criterion task is more critical than the difficulty and variations of task practice when learning new gait patterns during treadmill walking.  相似文献   

13.
Piras F  Coull JT 《PloS one》2011,6(3):e18203
It is not yet known whether the scalar properties of explicit timing are also displayed by more implicit, predictive forms of timing. We investigated whether performance in both explicit and predictive timing tasks conformed to the two psychophysical properties of scalar timing: the Psychophysical law and Weber's law. Our explicit temporal generalization task required overt estimation of the duration of an empty interval bounded by visual markers, whereas our temporal expectancy task presented visual stimuli at temporally predictable intervals, which facilitated motor preparation thus speeding target detection. The Psychophysical Law and Weber's Law were modeled, respectively, by (1) the functional dependence between mean subjective time and real time (2) the linearity of the relationship between timing variability and duration. Results showed that performance for predictive, as well as explicit, timing conformed to both psychophysical properties of interval timing. Both tasks showed the same linear relationship between subjective and real time, demonstrating that the same representational mechanism is engaged whether it is transferred into an overt estimate of duration or used to optimise sensorimotor behavior. Moreover, variability increased with increasing duration during both tasks, consistent with a scalar representation of time in both predictive and explicit timing. However, timing variability was greater during predictive timing, at least for durations greater than 200 msec, and ascribable to temporal, rather than non-temporal, mechanisms engaged by the task. These results suggest that although the same internal representation of time was used in both tasks, its external manifestation varied as a function of temporal task goals.  相似文献   

14.
We review the leaky competing accumulator model for two-alternative forced-choice decisions with cued responses, and propose extensions to account for the influence of unequal rewards. Assuming that stimulus information is integrated until the cue to respond arrives and that firing rates of stimulus-selective neurons remain well within physiological bounds, the model reduces to an Ornstein-Uhlenbeck (OU) process that yields explicit expressions for the psychometric function that describes accuracy. From these we compute strategies that optimize the rewards expected over blocks of trials administered with mixed difficulty and reward contingencies. The psychometric function is characterized by two parameters: its midpoint slope, which quantifies a subject''s ability to extract signal from noise, and its shift, which measures the bias applied to account for unequal rewards. We fit these to data from two monkeys performing the moving dots task with mixed coherences and reward schedules. We find that their behaviors averaged over multiple sessions are close to optimal, with shifts erring in the direction of smaller penalties. We propose two methods for biasing the OU process to produce such shifts.  相似文献   

15.
It takes longer to accomplish difficult tasks than easy ones. In the context of motor behaviour, Fitts'' famous law states that the time needed to successfully execute an aiming movement increases linearly with task difficulty. While Fitts'' explicit formulation has met criticism, the relation between task difficulty and movement time is invariantly portrayed as continuous. Here, we demonstrate that Fitts'' law is discontinuous in reciprocal aiming owing to a transition in operative motor control mechanisms with increasing task difficulty. In particular, rhythmic movements are implemented in easy tasks and discrete movements in difficult ones. How movement time increases with task difficulty differs in both movement types. It appears, therefore, that the human nervous system abruptly engages a different control mechanism when task difficulty increases.  相似文献   

16.
The current study investigated whether training improves the capacity of visual working memory using individualized adaptive training methods. Two groups of participants were trained for two targeted processes, filtering and consolidation. Before and after the training, the participants, including those with no training, performed a lateralized change detection task in which one side of the visual display had to be selected and the other side ignored. Across ten-day training sessions, the participants performed two modified versions of the lateralized change detection task. The number of distractors and duration of the consolidation period were adjusted individually to increase the task difficulty of the filtering and consolidation training, respectively. Results showed that the degree of improvement shown during the training was positively correlated with the increase in memory capacity, and training-induced benefits were most evident for larger set sizes in the filtering training group. These results suggest that visual working memory training is effective, especially when it is adaptive, individualized, and targeted.  相似文献   

17.
We study the optimal conservation effort for a population in a fluctuating environment. The survivorship of a population is affected by unpredictable environmental fluctuation (noise) and can be improved by conservation effort accompanied by a cost. The optimal effort level is the one that minimizes the total cost, defined as the weighted sum of the population extinction risk and the economic cost of conservation effort. The optimal effort depends on the variance and the probability distribution of the noise, the relative importance of the population's survival vs. the economic cost, the effectiveness of conservation effort, and the time scope over which we optimize. The analysis of dynamic programming illustrates that the choice of extinction risk function greatly affects the optimal effort level. The conservation effort level that is the best solution of a multiple-year optimization may be higher than that for the corresponding single-year optimization, if the population is relatively safe. However, the conservation level for the multiple-year optimization becomes lower than for the single-year optimization if the population is endangered. In a similar manner, the optimal conservation effort level for the problem with a short time scope is either higher or lower than that for the problem with a long time scope, depending on the extinction risk of the population. Next, for each parameter of the model, we define five different sensitivities of extinction probability or of the total cost. We then study the mean increase in the total cost caused by the uncertainty of parameters. To achieve the best conservation result, we need to invest the limited research effort to the parameter with the largest effect to the optimal effort level, rather than to those with large impacts on the extinction probability or on the total cost. The recommended policy should depend critically on the choice of the criterion to optimize, which shows the importance of theoretical study of the relationship in performing proper decision making in conservation practice.  相似文献   

18.
To study how auditory cortical processing is affected by anticipating and hearing of long emotional sounds, we recorded auditory evoked magnetic fields with a whole-scalp MEG device from 15 healthy adults who were listening to emotional or neutral sounds. Pleasant, unpleasant, or neutral sounds, each lasting for 6 s, were played in a random order, preceded by 100-ms cue tones (0.5, 1, or 2 kHz) 2 s before the onset of the sound. The cue tones, indicating the valence of the upcoming emotional sounds, evoked typical transient N100m responses in the auditory cortex. During the rest of the anticipation period (until the beginning of the emotional sound), auditory cortices of both hemispheres generated slow shifts of the same polarity as N100m. During anticipation, the relative strengths of the auditory-cortex signals depended on the upcoming sound: towards the end of the anticipation period the activity became stronger when the subject was anticipating emotional rather than neutral sounds. During the actual emotional and neutral sounds, sustained fields were predominant in the left hemisphere for all sounds. The measured DC MEG signals during both anticipation and hearing of emotional sounds implied that following the cue that indicates the valence of the upcoming sound, the auditory-cortex activity is modulated by the upcoming sound category during the anticipation period.  相似文献   

19.
Mechanisms of explicit object recognition are often difficult to investigate and require stimuli with controlled features whose expression can be manipulated in a precise quantitative fashion. Here, we developed a novel method (called "Dots"), for generating visual stimuli, which is based on the progressive deformation of a regular lattice of dots, driven by local contour information from images of objects. By applying progressively larger deformation to the lattice, the latter conveys progressively more information about the target object. Stimuli generated with the presented method enable a precise control of object-related information content while preserving low-level image statistics, globally, and affecting them only little, locally. We show that such stimuli are useful for investigating object recognition under a naturalistic setting--free visual exploration--enabling a clear dissociation between object detection and explicit recognition. Using the introduced stimuli, we show that top-down modulation induced by previous exposure to target objects can greatly influence perceptual decisions, lowering perceptual thresholds not only for object recognition but also for object detection (visual hysteresis). Visual hysteresis is target-specific, its expression and magnitude depending on the identity of individual objects. Relying on the particular features of dot stimuli and on eye-tracking measurements, we further demonstrate that top-down processes guide visual exploration, controlling how visual information is integrated by successive fixations. Prior knowledge about objects can guide saccades/fixations to sample locations that are supposed to be highly informative, even when the actual information is missing from those locations in the stimulus. The duration of individual fixations is modulated by the novelty and difficulty of the stimulus, likely reflecting cognitive demand.  相似文献   

20.
Exaggerated ornaments often evolve due to the mating preferences of the opposite sex. Genetic correlations between preferences and ornaments can lead both traits to elaborate dramatically in tandem, in a process known as ‘Fisherian runaway’. However, in most previous models of Fisherian runaway, elaborate ornaments are not expected to persist when preferences are consistently costly to the choosing sex. In contrast, we show here that exaggerated male ornaments can be maintained long term even when females must pay a cost to choose their mates. Preferences per se are not costly in our model, but females can only act on their preferences by investing resources in mate search. We predict that mate search effort should decrease with the cost of sampling additional mates and increase with the number of possible ornaments that females can choose from. The potential for multiple exaggerated ornaments to coexist depends on subtleties of their cost structure: strict trade-offs (additive costs) favour sequential ornament evolution, whereas looser trade-offs (multiplicative costs) allow for coexistence. Lastly, we show that pleiotropy affecting both ornaments and preferences makes it difficult for Fisherian runaway to initiate, increasing the evolutionary time until ornamentation. Our model highlights the important but neglected role of mate search effort in sexual selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号