首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Flooding periods can be one of the most important factors influencing nitrogen (N) biogeochemical processes in wetlands ecosystem. We conducted a field study using in situ incubation method to investigate the seasonal dynamics of soil net N mineralization in three coastal salt marshes (Suaeda salsa) with different flooding periods (i.e., short-term (STF), seasonal (SF), and tidal (TF) flooding wetland) in the Yellow River Delta. Selected soil inorganic N pools (ammonium, nitrate and inorganic N) and N transformation (mineralization, nitrification and ammonification) rates in the top 0–10 cm soils were repeatedly quantified from April to October. Clear seasonal patterns in inorganic N pools and transformation rates were observed in accord with the seasonal variations of temperature and moisture. Generally, higher levels of soil inorganic nitrogen, ammonium nitrogen (NH4+-N) and nitrate nitrogen (NO3-N) occurred in the early-growing season (April), and NH4+-N contents got a small accumulative peak in midsummer (September). The lower rates (negative) of net mineralization (Rmin), nitrification (Rnit) and ammonification (Ramm) were observed in the early-growing season (April–June) and fall (September–October), whereas higher values (positive) in midsummer (August–September). Flooding had a significant influence on inorganic N pools (except for NH4+-N) and transformation rates (p < 0.05). Rmin values in SF wetland were significantly higher in the August-September period than those in other incubation periods. Rnit values in TF wetland exhibited a small variation and the highest value occured in the June–August period. The results of principal component analysis showed that soil samples were clearly divided into two groups before and after flow-sediment regulation. After flooding events, the Rmin and Ramm values generally increased in the three wetlands, whereas a significant decrease in Rnit values was observed in SF wetland (p < 0.05), thus the differences in NO3-N among these wetlands were eliminated. These results suggested that seasonal variations in temperature and moisture are important factors influencing inorganic N pools and transformation rates.  相似文献   

2.
盐度对互花米草枯落物分解释放硅、碳、氮元素的影响   总被引:1,自引:0,他引:1  
为了研究潮汐湿地盐度对枯落物分解过程中硅、碳、氮元素释放的影响,通过室内模拟不同盐度(0、5、15和30)对互花米草枯落物茎和叶分解释放过程中硅、碳、氮元素的动态变化进行测定。结果表明:(1)互花米草茎和叶枯落物失重率和分解速率均随盐度增加而降低。(2)互花米草茎和叶枯落物分解水体中硅含量均随着盐度升高而增加,并且盐度30处理下,枯落物分解硅释放量显著高于盐度0和5(P0.05)。而分解末期生物硅残留量则随盐度升高而降低。(3)不同盐度处理茎枯落物分解碳释放量无显著差异,但叶枯落物分解碳释放量在盐度5、15和30处理中显著高于淡水(P0.05)。(4)互花米草茎枯落物分解释放到水中的NH_4~+-N含量随着盐度的升高而减少,NO_3~--N含量与之相反。研究单因素盐度对枯落物分解及元素释放的影响,可以为预测潮汐湿地枯落物分解对盐水入侵的响应机制提供参考,为湿地生源要素生物地球化学循环过程研究提供基础依据。  相似文献   

3.
Macroalgae has bloomed in the brackish lake of Shenzhen Bay, China continuously from 2010 to 2014. Gracilaria tenuistipitata was identified as the causative macroalgal species. The aim of this study was to explore the outbreak mechanism of G. tenuistipitata, by studying the effects of salinity and nitrogen sources on growth, and the different nitrogen sources uptake characteristic. Our experimental design was based on environmental conditions observed in the bloom areas, and these main factors were simulated in the laboratory. Results showed that salinity 12 to 20 ‰ was suitable for G. tenuistipitata growth. When the nitrogen sources'' (NH4 +, NO3 ) concentrations reached 40 µM or above, the growth rate of G. tenuistipitata was significantly higher. Algal biomass was higher (approximately 1.4 times) when cultured with NH4 + than that with NO3 addition. Coincidentally, macroalgal bloom formed during times of moderate salinity (∼12 ‰) and high nitrogen conditions. The NH4 + and NO3 uptake characteristic was studied to understand the potential mechanism of G. tenuistipitata bloom. NH4 + uptake was best described by a linear, rate-unsaturated response, with the slope decreasing with time intervals. In contrast, NO3 uptake followed a rate-saturating mechanism best described by the Michaelis-Menten model, with kinetic parameters Vmax = 37.2 µM g−1 DM h−1 and Ks = 61.5 µM. Further, based on the isotope 15N tracer method, we found that 15N from NH4 + accumulated faster and reached an atom% twice than that of 15N from NO3 , suggesting when both NH4 + and NO3 were available, NH4 + was assimilated more rapidly. The results of the present study indicate that in the estuarine environment, the combination of moderate salinity with high ammonium may stimulate bloom formation.  相似文献   

4.
Little is known about the effects of NaCl stress on perennial ryegrass (Lolium perenne L.) photosynthesis and carbohydrate flux. The objective of this study was to understand the carbohydrate metabolism and identify the gene expression affected by salinity stress. Seventy-four days old seedlings of two perennial ryegrass accessions (salt-sensitive ‘PI 538976’ and salt-tolerant ‘Overdrive’) were subjected to three levels of salinity stress for 5 days. Turf quality in all tissues (leaves, stems and roots) of both grass accessions negatively and significantly correlated with GFS (Glu+Fru+Suc) content, except for ‘Overdrive’ stems. Relative growth rate (RGR) in leaves negatively and significantly correlated with GFS content in ‘Overdrive’ (P<0.01) and ‘PI 538976’ (P<0.05) under salt stress. ‘Overdrive’ had higher CO2 assimilation and Fv/Fm than ‘PI 538976’. Intercellular CO2 concentration, however, was higher in ‘PI 538976’ treated with 400 mM NaCl relative to that with 200 mM NaCl. GFS content negatively and significantly correlated with RGR in ‘Overdrive’ and ‘PI 538976’ leaves and in ‘PI 538976’ stems and roots under salt stress. In leaves, carbohydrate allocation negatively and significantly correlated with RGR (r2 = 0.83, P<0.01) and turf quality (r2 = 0.88, P<0.01) in salt-tolerant ‘Overdrive’, however, the opposite trend for salt-sensitive ‘PI 538976’ (r2 = 0.71, P<0.05 for RGR; r2 = 0.62, P>0.05 for turf quality). A greater up-regulation in the expression of SPS, SS, SI, 6-SFT gene was observed in ‘Overdrive’ than ‘PI 538976’. A higher level of SPS and SS expression in leaves was found in ‘PI 538976’ relative to ‘Overdrive’. Accumulation of hexoses in roots, stems and leaves can induce a feedback repression to photosynthesis in salt-stressed perennial ryegrass and the salt tolerance may be changed with the carbohydrate allocation in leaves and stems.  相似文献   

5.
To investigate the effect of sheep dung on soil carbon (C) sequestration, a 152 days incubation experiment was conducted with soils from two different Inner Mongolian grasslands, i.e. a Leymus chinensis dominated grassland representing the climax community (2.1% organic matter content) and a heavily degraded Artemisia frigida dominated community (1.3% organic matter content). Dung was collected from sheep either fed on L. chinensis (C3 plant with δ13C = −26.8‰; dung δ13C = −26.2‰) or Cleistogenes squarrosa (C4 plant with δ13C = −14.6‰; dung δ13C = −15.7‰). Fresh C3 and C4 sheep dung was mixed with the two grassland soils and incubated under controlled conditions for analysis of 13C-CO2 emissions. Soil samples were taken at days 17, 43, 86, 127 and 152 after sheep dung addition to detect the δ13C signal in soil and dung components. Analysis revealed that 16.9% and 16.6% of the sheep dung C had decomposed, of which 3.5% and 2.8% was sequestrated in the soils of L. chinensis and A. frigida grasslands, respectively, while the remaining decomposed sheep dung was emitted as CO2. The cumulative amounts of C respired from dung treated soils during 152 days were 7–8 times higher than in the un-amended controls. In both grassland soils, ca. 60% of the evolved CO2 originated from the decomposing sheep dung and 40% from the native soil C. Priming effects of soil C decomposition were observed in both soils, i.e. 1.4 g and 1.6 g additional soil C kg−1 dry soil had been emitted as CO2 for the L. chinensis and A. frigida soils, respectively. Hence, the net C losses from L. chinensis and A. frigida soils were 0.6 g and 0.9 g C kg−1 soil, which was 2.6% and 7.0% of the total C in L. chinensis and A. frigida grasslands soils, respectively. Our results suggest that grazing of degraded Inner Mongolian pastures may cause a net soil C loss due to the positive priming effect, thereby accelerating soil deterioration.  相似文献   

6.
Vibrio parahaemolyticus, Vibrio vulnificus, and Vibrio cholerae of the non-O1/non-O139 serotype are present in coastal lagoons of southern France. In these Mediterranean regions, the rivers have long low-flow periods followed by short-duration or flash floods during and after heavy intense rainstorms, particularly at the end of the summer and in autumn. These floods bring large volumes of freshwater into the lagoons, reducing their salinity. Water temperatures recorded during sampling (15 to 24°C) were favorable for the presence and multiplication of vibrios. In autumn 2011, before heavy rainfalls and flash floods, salinities ranged from 31.4 to 36.1‰ and concentrations of V. parahaemolyticus, V. vulnificus, and V. cholerae varied from 0 to 1.5 × 103 most probable number (MPN)/liter, 0.7 to 2.1 × 103 MPN/liter, and 0 to 93 MPN/liter, respectively. Following heavy rainstorms that generated severe flash flooding and heavy discharge of freshwater, salinity decreased, reaching 2.2 to 16.4‰ within 15 days, depending on the site, with a concomitant increase in Vibrio concentration to ca. 104 MPN/liter. The highest concentrations were reached with salinities between 10 and 20‰ for V. parahaemolyticus, 10 and 15‰ for V. vulnificus, and 5 and 12‰ for V. cholerae. Thus, an abrupt decrease in salinity caused by heavy rainfall and major flooding favored growth of human-pathogenic Vibrio spp. and their proliferation in the Languedocian lagoons. Based on these results, it is recommended that temperature and salinity monitoring be done to predict the presence of these Vibrio spp. in shellfish-harvesting areas of the lagoons.  相似文献   

7.
Relatively few studies have investigated peripheral sweating mechanisms of long-distance runners. The aim of this study was to compare peripheral sweating mechanisms in male long-distance runners, and sedentary counterparts. Thirty six subjects, including 20 sedentary controls and 16 long-distance runners (with 7–12 years of athletic training, average 9.2±2.1 years) were observed. Quantitative sudomotor axon reflex testing (QSART) with iontophoresis (2 mA for 5 min) and 10% acetylcholine (ACh) were performed to determine axon reflex-mediated and directly activated (DIR, muscarinic receptor) sweating. Sweat onset time, sweat rate, number of activated sweat glands, sweat output per gland and skin temperature were measured at rest while maximum oxygen uptake (VO2max) were measured during maximal cycling. Sweat rate, activated sweat glands, sweat output per gland, skin temperature and VO2max were significantly higher in the trained runners than in the sedentary controls. Sweat onset time was significantly shorter for the runners. In the group of long-distance runners, significant correlations were found between VO2max and sweat onset time (r2 = 0.543, P<0.01, n = 16), DIR sweat rate (r2 = 0.584, P<0.001, n = 16), sweat output per gland (r2 = 0.539, P<0.01, n = 16). There was no correlation between VO2max and activated sweat glands. These findings suggest that habitual long-distance running results in upregulation of the peripheral sweating mechanisms in humans. Additional research is needed to determine the molecular mechanism underlying these changes. These findings complement the existing sweating data in long-distance runners.  相似文献   

8.
Field experiments were conducted under flooded soil conditions using Maahas clay amended with urea and rice straw-sesbania mixtures during the wet and dry seasons. Parallel laboratory incubation tests were done. The objectives were 1) to determine N mineralization patterns and establish the relationship between mineralization parameters and either N availability or grain yield, and 2) to correlate the results of organic N mineralization studies in the laboratory with data from field experiments. The N mineralization patterns of flooded soils in the laboratory followed a logistic function. In laboratory studies, mineralization potential was positively correlated with extractable soil NH4 +-N at the end of the incubation period (cumulative available N). Likewise, mineralization potential calculated from laboratory studies was positively correlated with N uptake and grain yield from field studies. Extractable (NH4 ++NO3 )-N in the field correlated positively with extractable NH4 +-N in the laboratory. The extractable NH4 +-N from laboratory incubations at 14 days after transplanting, panicle initiation, and maturity was also highly and positively correlated with grain yield from field experiments.  相似文献   

9.
Wetland cultivation and its effects on soil properties in salt marshes in the Yellow River Delta, China were examined by using a combination of the satellite imageries and field experiments. Results showed that the conversions mainly occurred between dry lands and Phragmites australis–Suaeda salsaTamarix chinensis marshes (PSTMs). The total area of marsh wetland was reduced by 65.09 km2 during the period from 1986 to 2005, and these conversions might be attributed to a combination of farming, oil exploration and water extraction, as well as soil salinization. Significant differences were observed in bulk density, pH, salinity and NO3-N between different land-use types (P < 0.05). After the conversions from marsh wetlands to dry lands, bulk density, pH, salinity and NH4+-N decreased slightly, while a significant increase in NO3-N, TN (total nitrogen), and AP (available phosphorus) (P < 0.05) was observed. The more loss of soil nutrient storage also occurred after the maximal area conversion from PSTMs to dry lands compared to other conversions during the study period. The storages of soil organic matter, NH4+-N and total phosphorus decreased greatly under the conversion from three types of marshes to dry lands, while those of NO3-N, AP and TN showed an obvious increase during the whole study period.  相似文献   

10.
Installation of impervious surfaces in urban areas has attracted increasing attention due to its potential hazard to urban ecosystems. Urban soils are suggested to have robust carbon (C) sequestration capacity; however, the C stocks and dynamics in the soils covered by impervious surfaces that dominate urban areas are still not well characterized. We compared soil organic C (SOC) densities and their stabilities under impervious surface, determined by a 28-d incubation experiment, with those in open areas in Yixing City, China. The SOC density (0–20 cm) under impervious surfaces was, on average, 68% lower than that in open areas. Furthermore, there was a significantly (P<0.05) positive correlation between the densities of SOC and total nitrogen (N) in the open soils, whereas the correlation was not apparent for the impervious-covered soils, suggesting that the artificial soil sealing in urban areas decoupled the cycle of C and N. Cumulative CO2-C evolved during the 28-d incubation was lower from the impervious-covered soils than from the open soils, and agreed well with a first-order decay model (C t = C 1+C 0(1-e -kt)). The model results indicated that the SOC underlying capped surfaces had weaker decomposability and lower turnover rate. Our results confirm the unique character of urban SOC, especially that beneath impervious surface, and suggest that scientific and management views on regional SOC assessment may need to consider the role of urban carbon stocks.  相似文献   

11.
The Chinchilla Local Fauna is a diverse assemblage of both terrestrial and aquatic Pliocene vertebrates from the fluviatile Chinchilla Sand deposits of southeastern Queensland, Australia. It represents one of Australia''s few but exceptionally rich Pliocene vertebrate localities, and as such is an important source of paleoecological data concerning Pliocene environmental changes and its effects on ecosystems. Prior inferences about the paleoenvironment of this locality made on the basis of qualitative observations have ranged from grassland to open woodland to wetland. Examination of the carbon and oxygen isotopes in the tooth enamel of marsupials from this site represents a quantitative method for inferring the paleoenvironments and paleoecology of the fossil fauna. Results from Chinchilla show that Protemnodon sp. indet. consumed both C3 and C4 photosynthesis plant types (mean δ13C = −14.5±2.0‰), and therefore probably occupied a mixed vegetation environment. Macropus sp. indet. from Chinchilla also consumed a mixed diet of both C3 and C4 plants, with more of a tendency for C4 plant consumption (mean δ13C = −10.3±2.3‰). Interestingly, their isotopic dietary signature is more consistent with tropical and temperate kangaroo communities than the sub-tropical communities found around Chinchilla today. Other genera sampled in this study include the extinct kangaroo Troposodon sp. indet. and the fossil diprotodontid Euryzygoma dunense each of which appear to have occupied distinct dietary niches. This study suggests that southeastern Queensland hosted a mosaic of tropical forests, wetlands and grasslands during the Pliocene and was much less arid than previously thought.  相似文献   

12.
P-glycoprotein (P-gp) expression determines the absorption, distribution, metabolism and excretion of many drugs in the body. Also, up-regulation of P-gp acts as a defense mechanism against acute inflammation. This study examined expression levels of abcb1 mRNA and localization of P-gp protein in the liver, kidney, duodenum, jejunum and ileum in healthy and E. coli infected broilers by real time RT-PCR and immunohistochemistry. Meanwhile, pharmacokinetics of orally administered enrofloxacin was also investigated in healthy and infected broilers by HPLC. The results indicated that E. coli infection up-regulated expression of abcb1 mRNA levels significantly in the kidney, jejunum and ileum (P<0.05), but not significantly in the liver and duodenum (P>0.05). However, the expression level of CYP 3A37 mRNA were observed significantly decreased only in liver and kidney of E. coli infected broilers (P<0.05) compared with healthy birds. Furthermore, the infection reduced absorption of orally administered enrofloxacin, significantly decreased Cmax (0.34 vs 0.98 µg mL−1, P = 0.000) and AUC0-12h (4.37 vs 8.88 µg mL−1 h, P = 0.042) of enrofloxacin, but increased Tmax (8.32 vs 3.28 h, P = 0.040), T1/2a(2.66 vs 1.64 h−1, P = 0.050) and V/F (26.7 vs 5.2 L, P = 0.040). Treatment with verapamil, an inhibitor of P-gp, significantly improved the absorption of enrofloxacin in both healthy and infected broilers. The results suggest that the E. coli infection induces intestine P-gp expression, altering the absorption of orally administered enrofloxacin in broilers.  相似文献   

13.

Background

Measurement of partial pressure of oxygen (PO2) at high temporal resolution remains a technological challenge. This study introduces a novel PO2 sensing technology based on Multi-Frequency Phase Fluorimetry (MFPF). The aim was to validate MFPF against polarographic Clark-type electrode (CTE) PO2 measurements.

Methodology/Principal Findings

MFPF technology was first investigated in N = 8 anaesthetised pigs at FIO2 of 0.21, 0.4, 0.6, 0.8 and 1.0. At each FIO2 level, blood samples were withdrawn and PO2 was measured in vitro with MFPF using two FOXY-AL300 probes immediately followed by CTE measurement. Secondly, MFPF-PO2 readings were compared to CTE in an artificial circulatory setup (human packed red blood cells, haematocrit of 30%). The impacts of temperature (20, 30, 40°C) and blood flow (0.8, 1.6, 2.4, 3.2, 4.0 L min−1) on MFPF-PO2 measurements were assessed. MFPF response time in the gas- and blood-phase was determined. Porcine MFPF-PO2 ranged from 63 to 749 mmHg; the corresponding CTE samples from 43 to 712 mmHg. Linear regression: CTE = 15.59+1.18*MFPF (R2 = 0.93; P<0.0001). Bland Altman analysis: meandiff 69.2 mmHg, rangediff -50.1/215.6 mmHg, 1.96-SD limits -56.3/194.8 mmHg. In artificial circulatory setup, MFPF-PO2 ranged from 20 to 567 mmHg and CTE samples from 11 to 575 mmHg. Linear regression: CTE = −8.73+1.05*MFPF (R2 = 0.99; P<0.0001). Bland-Altman analysis: meandiff 6.6 mmHg, rangediff -9.7/20.5 mmHg, 1.96-SD limits -12.7/25.8 mmHg. Differences between MFPF and CTE-PO2 due to variations of temperature were less than 6 mmHg (range 0–140 mmHg) and less than 35 mmHg (range 140–750 mmHg); differences due to variations in blood flow were less than 15 mmHg (all P-values>0.05). MFPF response-time (monoexponential) was 1.48±0.26 s for the gas-phase and 1.51±0.20 s for the blood-phase.

Conclusions/Significance

MFPF-derived PO2 readings were reproducible and showed excellent correlation and good agreement with Clark-type electrode-based PO2 measurements. There was no relevant impact of temperature and blood flow upon MFPF-PO2 measurements. The response time of the MFPF FOXY-AL300 probe was adequate for real-time sensing in the blood phase.  相似文献   

14.
滇西北高原纳帕海湿地土壤氮矿化特征   总被引:4,自引:4,他引:4  
解成杰  郭雪莲  余磊朝  许静 《生态学报》2013,33(24):7782-7787
采用树脂芯原位培育法,研究了纳帕海沼泽、沼泽化草甸和草甸土壤氮的矿化特征。结果表明,铵态氮(NH4+-N)为沼泽、沼泽化草甸土壤中无机氮的主要存在形式,分别占无机氮含量的96.76%和75.24%,而硝态氮(NO3--N)为草甸土壤中无机氮的主要存在形式,占无机氮含量的58.77%。植物生长期内,纳帕海湿地土壤的净氮矿化速率表现为沼泽化草甸 > 草甸 > 沼泽,表明干湿交替的土壤环境更利于土壤氮矿化作用的进行,土壤中氮素有效性和维持植物可利用氮素的能力更强。整个生长季,沼泽和草甸土壤氮矿化为硝化作用,而沼泽化草甸土壤氮矿化为氨化作用。土壤硝态氮含量、有机质含量、碳氮比和含水量均对纳帕海沼泽、沼泽化草甸和草甸土壤的氮矿化产生显著影响。  相似文献   

15.
The effects of select monoterpenes on nitrogen (N) mineralization and nitrification potentials were determined in four separate laboratory bioassays. The effect of increasing monoterpene addition was an initial reduction in NO3 -N production (nitrification inhibition), followed by a reduction in the sum of NH4 +-N and NO3 -N (inhibition of net N mineralization and net immobilization at high monoterpene additions. Monoterpenes could produce this pattern by inhibiting nitrification, reducing net N mineralization, enhancing immobilization of NO3 -N relative to NH4 +-N, and/or stimulating overall net immobilization of N by carbon-rich material.Initial monoterpene concentrations in the assay soils were about 5% of the added amount and were below detection after incubation in most samples.Potential N mineralization-immobilization, nitrification, and soil monoterpene concentrations were determined by soil horizon for four collections from a ponderosa pine (Pinus ponderosa) stand in New Mexico. Concentrations of monoterpenes declined exponentially with soil depth and varied greatly within a horizon. Monoterpene content of the forest floor was not correlated with forest floor biomass. Net N mineralization was inversely correlated with total monoterpene content of all sampled horizons. Nitrification was greatest in the mineral soil, intermediate in the F-H horizon, and never occurred in the L horizon. Nitrification in the mineral soil was inversely correlated with the amount of monoterpenes in the L horizon that contain terminal unsaturated carbon-carbon bonds (r 2 = 0.37, P 0.01). This pattern in the field corresponded to the pattern shown in the laboratory assays with increasing monoterpene additions.  相似文献   

16.
Hirschsprung disease (HSCR) is a congenital and heterogeneous disorder characterized by the absence of intramural nervous plexuses along variable lengths of the hindgut. Although RET is a well-established risk factor, a recent genome-wide association study (GWAS) of HSCR has identified NRG1 as an additional susceptibility locus. To discover additional risk loci, we performed a GWAS of 123 sporadic HSCR patients and 432 unaffected controls using a large-scale platform with coverage of over 1 million polymorphic markers. The result was that our study replicated the findings of RET-CSGALNACT2-RASGEF1A genomic region (rawP = 5.69×10−19 before a Bonferroni correction; corrP = 4.31×10−13 after a Bonferroni correction) and NRG1 as susceptibility loci. In addition, this study identified SLC6A20 (adjP = 2.71×10−6), RORA (adjP = 1.26×10−5), and ABCC9 (adjP = 1.86×10−5) as new potential susceptibility loci under adjusting the already known loci on the RET-CSGALNACT2-RASGEF1A and NRG1 regions, although none of the SNPs in these genes passed the Bonferroni correction. In further subgroup analysis, the RET-CSGALNACT2-RASGEF1A genomic region was observed to have different significance levels among subgroups: short-segment (S-HSCR, corrP = 1.71×10−5), long-segment (L-HSCR, corrP = 6.66×10−4), and total colonic aganglionosis (TCA, corrP>0.05). This differential pattern in the significance level suggests that other genomic loci or mechanisms may affect the length of aganglionosis in HSCR subgroups during enteric nervous system (ENS) development. Although functional evaluations are needed, our findings might facilitate improved understanding of the mechanisms of HSCR pathogenesis.  相似文献   

17.
18.

Background

Occupational exposure to endotoxin is associated with decrements in pulmonary function, but how much variation in this association is explained by genetic variants is not well understood.

Objective

We aimed to identify single nucleotide polymorphisms (SNPs) that are associated with the rate of forced expiratory volume in one second (FEV1) decline by a large scale genetic association study in newly-hired healthy young female cotton textile workers.

Methods

DNA samples were genotyped using the Illumina Human CVD BeadChip. Change rate in FEV1 was modeled as a function of each SNP genotype in linear regression model with covariate adjustment. We controlled the type 1 error in study-wide level by permutation method. The false discovery rate (FDR) and the family-wise error rate (FWER) were set to be 0.10 and 0.15 respectively.

Results

Two SNPs were found to be significant (P<6.29×10−5), including rs1910047 (P = 3.07×10−5, FDR = 0.0778) and rs9469089 (P = 6.19×10−5, FDR = 0.0967), as well as other eight suggestive (P<5×10−4) associated SNPs. Gene-gene and gene-environment interactions were also observed, such as rs1910047 and rs1049970 (P = 0.0418, FDR = 0.0895); rs9469089 and age (P = 0.0161, FDR = 0.0264). Genetic risk score analysis showed that the more risk loci the subjects carried, the larger the rate of FEV1 decline occurred (P trend = 3.01×10−18). However, the association was different among age subgroups (P = 7.11×10−6) and endotoxin subgroups (P = 1.08×10−2). Functional network analysis illustrates potential biological connections of all interacted genes.

Conclusions

Genetic variants together with environmental factors interact to affect the rate of FEV1 decline in cotton textile workers.  相似文献   

19.
The principle of enzyme kinetics suggests that the temperature sensitivity (Q10) of soil organic matter (SOM) decomposition is inversely related to organic carbon (C) quality, i.e., the C quality-temperature (CQT) hypothesis. We tested this hypothesis by performing laboratory incubation experiments with bulk soil, macroaggregates (MA, 250–2000 μm), microaggregates (MI, 53–250 μm), and mineral fractions (MF, <53 μm) collected from an Inner Mongolian temperate grassland. The results showed that temperature and aggregate size significantly affected on SOM decomposition, with notable interactive effects (P<0.0001). For 2 weeks, the decomposition rates of bulk soil and soil aggregates increased with increasing incubation temperature in the following order: MA>MF>bulk soil >MI(P <0.05). The Q10 values were highest for MA, followed (in decreasing order) by bulk soil, MF, and MI. Similarly, the activation energies (Ea) for MA, bulk soil, MF, and MI were 48.47, 33.26, 27.01, and 23.18 KJ mol−1, respectively. The observed significant negative correlations between Q10 and C quality index in bulk soil and soil aggregates (P<0.05) suggested that the CQT hypothesis is applicable to soil aggregates. Cumulative C emission differed significantly among aggregate size classes (P <0.0001), with the largest values occurring in MA (1101 μg g−1), followed by MF (976 μg g−1) and MI (879 μg g−1). These findings suggest that feedback from SOM decomposition in response to changing temperature is closely associated withsoil aggregation and highlights the complex responses of ecosystem C budgets to future warming scenarios.  相似文献   

20.
Coastal wetlands have the capacity to retain and denitrify large quantities of reactive nitrogen (N), making them important in attenuating increased anthropogenic N flux to coastal ecosystems. The ability of coastal wetlands to retain and transform N is being reduced by wetland losses resulting from land development. Nitrogen retention in coastal wetlands is further threatened by the increasing frequency and spatial extent of saltwater inundation in historically freshwater ecosystems, due to the combined effects of dredging, declining river discharge to coastal areas due to human water use, increased drought frequency, and accelerating sea‐level rise. Because saltwater incursion may affect N cycling through multiple mechanisms, the impacts of salinization on coastal freshwater wetland N retention and transformation are not well understood. Here, we show that repeated annual saltwater incursion during late summer droughts in the coastal plain of North Carolina changed N export from organic to inorganic forms and led to a doubling of annual NH4+ export from a 440 hectare former agricultural field undergoing wetland restoration. Soil solution NH4+ concentrations in two mature wetlands also increased with salinization, but the magnitude of increase was smaller than that in the former agricultural field. Long‐term saltwater exposure experiments with intact soil columns demonstrated that much of the increase in reactive N released could be explained by exchange of salt cations with sediment NH4+. Using these findings together with the predicted flooding of 1661 km2 of wetlands along the NC coast by 2100, we estimate that saltwater incursion into these coastal areas could release up to 18 077 Mg N, or approximately half the annual NH4+ flux of the Mississippi River. Our results suggest that saltwater incursion into coastal freshwater wetlands globally could lead to increased N loading to sensitive coastal waters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号