首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Necrotic cell death triggers a range of biological responses including a strong adaptive immune response, yet we know little about the cellular pathways that control necrotic cell death. Inhibitor studies suggest that proteases, and in particular cathepsins, drive necrotic cell death. The cathepsin B-selective inhibitor CA-074-Me blocks all forms of programmed necrosis by an unknown mechanism. We found that cathepsin B deficiency does not prevent induction of pyroptosis and lysosome-mediated necrosis suggesting that CA-074-Me blocks necrotic cell death by targeting cathepsins other than cathepsin B. A single cathepsin, cathepsin C, drives necrotic cell death mediated by the lysosome-destabilizing agent Leu-Leu-OMe (LLOMe). Here we present evidence that cathepsin C-deficiency and CA-074-Me block LLOMe killing in a distinct and cell type-specific fashion. Cathepsin C-deficiency and CA-074-Me block LLOMe killing of all myeloid cells, except for neutrophils. Cathepsin C-deficiency, but not CA-074-Me, blocks LLOMe killing of neutrophils suggesting that CA-074-Me does not target cathepsin C directly, consistent with inhibitor studies using recombinant cathepsin C. Unlike other cathepsins, cathepsin C lacks endoproteolytic activity, and requires activation by other lysosomal proteases, such as cathepsin D. Consistent with this theory, we found that lysosomotropic agents and cathepsin D downregulation by siRNA block LLOMe-mediated necrosis. Our findings indicate that a proteolytic cascade, involving cathepsins C and D, controls LLOMe-mediated necrosis. In contrast, cathepsins C and D were not required for pyroptotic cell death suggesting that distinct cathepsins control pyroptosis and lysosome-mediated necrosis.  相似文献   

2.
In several 'in vitro' models of apoptosis, lysosomal proteolysis has been shown to play an active role in mediating the death signal by cytokines or antiblastic drugs. Depending on the experimental cell model and the cytotoxic stimulus applied, an increased expression and the cytosolic translocation of either cathepsin D or B have been reported in apoptotic cells. We have analysed the involvement of these lysosomal proteases in a canonical apoptotic cell model, namely L929 fibroblasts, in which apoptosis was induced by cytotoxic agents acting through different mechanisms: (i) the cytokine TNFalpha, which triggers the cell suicide via interaction with its membrane receptor, and (ii) the topoisomerase II-inhibitor etoposide (VP16), which directly causes DNA damage. In both cases the activity of cathepsins B and D increased in apoptosing cultures. CA074-Me, a specific inhibitor of cathepsin B, and Leupeptin, a broad inhibitor of serine and cysteine proteases (among which is cathepsin B), did not exert any protection from TNFalpha. In contrast, pre-loading the cells with pepstatin A, a specific inhibitor of cathepsin D, protected L929 cells from TNFalpha cytotoxicity by more than 50%. However, no protection was observed if pepstatin A was added concomitantly with the cytokine. Inhibition of either cathepsin B or D did not impede apoptosis induced by etoposide. Lysosomal integrity was preserved and cathepsin D remained still confined in vesicular structures in apoptotic cells treated with either TNFalpha or etoposide. It follows that proteolysis by cathepsin D is likely to represent an early event in the death pathway triggered by TNFalpha and occurs within the endosomal-lysosomal compartment.  相似文献   

3.
The potassium ionophore nigericin induces cell death and promotes the maturation and release of IL-1beta in lipopolysaccharide (LPS)-primed monocytes and macrophages, the latter depending on caspase-1 activation by an unknown mechanism. Here, we investigate the pathway that triggers cell death and activates caspase-1. We show that without LPS priming, nigericin alone triggered caspase-1 activation and IL-18 generation in THP-1 monocytic cells. Simultaneously, nigericin induced caspase-1-independent necrotic cell death, which was blocked by the cathepsin B inhibitor CA-074-Me and other cathepsin inhibitors. Cathepsin B activation after nigericin treatment was determined biochemically and corroborated by rapid lysosomal leakage and translocation of cathepsin B to the cytoplasm. IL-18 maturation was prevented by both caspase-1 and cathepsin B inhibitors in THP-1 cells, primary mouse macrophages and human blood monocytes. Moreover, IL-18 generation was reduced in THP-1 cells stably transformed either with cystatin A (an endogenous cathepsin inhibitor) or antisense cathepsin B cDNA. Collectively, our study establishes a critical role for cathepsin B in nigericin-induced caspase-1-dependent IL-18 maturation and caspase-1-independent necrosis.  相似文献   

4.
Apoptotic and autophagic cell death have been implicated, on the basis of morphological and biochemical criteria, in neuronal loss occurring in neurodegenerative diseases and it has been shown that they may overlap. We have studied the relationship between apoptosis and autophagic cell death in cerebellar granule cells (CGCs) undergoing apoptosis following serum and potassium deprivation. We found that apoptosis is accompanied by an early and marked proliferation of autophagosomal-lysosomal compartments as detected by electron microscopy and immunofluorescence analysis. Autophagy is blocked by hrIGF-1 and forskolin, two well-known inhibitors of CGC apoptosis, as well as by adenovirus-mediated overexpression of Bcl-2. 3-Methyladenine (3-MA) an inhibitor of autophagy, not only arrests this event but it also blocks apoptosis. The neuroprotective effect of 3-MA is accompanied by block of cytochrome c (cyt c) release in the cytosol and by inhibition of caspase-3 activation which, in turn, appears to be mediated by cathepsin B, as CA074-Me, a selective inhibitor of this enzyme, fully blocks the processing of pro-caspase-3. Immunofluorescence analysis demonstrated that cathepsin B, normally confined inside the lysosomal-endosomal compartment, is released during apoptosis into the cytosol where this enzyme may act as an execution protease. Collectively, these observations indicate that autophagy precedes and is causally connected with the subsequent onset of programmed death.  相似文献   

5.
Tumor hypoxia interferes with the efficacy of chemotherapy, radiotherapy, and tumor necrosis factor-α. TRAIL (tumor necrosis factor-related apoptosis inducing ligand) is a potent apoptosis inducer that limits tumor growth without damaging normal cells and tissues in vivo. We present evidence for a central role of lysosomal cathepsins in hypoxia and/or TRAIL-induced cell death in oral squamous cell carcinoma (OSCC) cells. Hypoxia or TRAIL-induced activation of cathepsins (B, D and L), caspases (-3 and -9), Bid cleavage, release of Bax and cytochrome c, and DNA fragmentation were blocked independently by zVAD-fmk, CA074Me or pepstatin A, consistent with the involvement of lysosomal cathepsin B and D in cell death. Lysosome stability and mitochondrial membrane potential were reduced in hypoxia and TRAIL-induced apoptosis. However, TRAIL treatment under hypoxic condition resulted in diminished apoptosis rates compared to treatment under normoxia. This inhibitory effect of hypoxia on TRAIL-induced apoptosis may be based on preventing Bax activation and thus protecting mitochondria stability. Our data show that TRAIL or hypoxia independently triggered activation of cathepsin B and D leading to apoptosis through Bid and Bax, and suggest that hypoxic tissue regions provide a selective environment for highly apoptosis-resistant clonal cells. Molecular therapy approaches based on cathepsin inhibitors need to address this novel tumor-preventing function of cathepsins in OSCC.  相似文献   

6.
Roles of cathepsins in reperfusion-induced apoptosis in cultured astrocytes   总被引:2,自引:0,他引:2  
Astrocytic apoptosis may play a role in the central nervous system injury. We previously showed that reperfusion of cultured astrocytes with normal medium after exposure to hydrogen peroxide (H(2)O(2))-containing medium causes apoptosis. This study examines the involvement of the lysosomal enzymes cathepsins B and D in the astrocytic apoptosis. Reperfusion after exposure to H(2)O(2) caused a marked increase in caspase-3 and cathepsin D activities and a marked decrease in cathepsin B activity. Pepstatin A, an inhibitor of cathepsin D, and acetyl-L-aspartyl-L-methionyl-L-glutaminyl-L-aspart-1-aldehyde (Ac-DMQD-CHO), a specific inhibitor of caspase-3, blocked the H(2)O(2)-induced decrease in cell viability and DNA ladder formation in cultured rat astrocytes. The (L-3-trans-(propylcarbamoyl)oxirane-2-carbonyl)-L-isoleucyl-L-proline methyl ester (CA074 Me), a specific inhibitor of cathepsin B, did not affect the H(2)O(2)-induced cell injury. On the other hand, CA074 Me decreased cell viability with DNA ladder formation when cultured in the presence of Ac-DMQD-CHO. This caspase-independent apoptosis was attenuated by the addition of the cathepsin D inhibitor pepstatin A. Caspase-3 like activity was markedly inhibited by Ac-DMQD-CHO and partially by pepstatin A. Pepstatin A and CA074 Me inhibited cathepsin B and cathepsin D activities, respectively, in the presence and absence of Ac-DMQD-CHO. These results suggest that cathepsins B and D are involved in astrocytic apoptosis: cathepsin D acts as a death-inducing factor upstream of caspase-3 and the caspase-independent apoptosis is regulated antagonistically by cathepsins B and D.  相似文献   

7.
Besides its physiological role in lysosomal protein breakdown, extralysosomal cathepsin B has recently been implicated in apoptotic cell death. Highly specific irreversible cathepsin B inhibitors that are readily cell-permeant should be useful tools to elucidate the effects of cathepsin B in the cytosol. We have covalently functionalised the poorly cell-permeant epoxysuccinyl-based cathepsin B inhibitor [R-Gly-Gly-Leu-(2S,3S)-tEps-Leu-Pro-OH; R=OMe] with the C-terminal heptapeptide segment of penetratin (R=epsilonAhx-Arg-Arg-Nle-Lys-Trp-Lys-Lys-NH2). The high inhibitory potency and selectivity for cathepsin B versus cathepsin L of the parent compound was not affected by the conjugation with the penetratin heptapeptide. The conjugate was shown to efficiently penetrate into MCF-7 cells as an active inhibitor, thereby circumventing an intracellular activation step that is required by other inhibitors, such as the prodrug-like epoxysuccinyl peptides E64d and CA074Me.  相似文献   

8.
We show that mitochondrial DNA (mtDNA)-depleted 143B cells are hypersensitive to staurosporine-induced cell death as evidenced by a more pronounced DNA fragmentation, a stronger activation of caspase-3, an enhanced poly(ADP-ribose) polymerase-1 (PARP-1) cleavage, and a more dramatic cytosolic release of cytochrome c. We also show that B-cell CLL/lymphoma-2 (Bcl-2), B-cell lymphoma extra large (Bcl-X(L)), and myeloid cell leukemia-1 (Mcl-1) are constitutively less abundant in mtDNA-depleted cells, that the inhibition of Bcl-2 and Bcl-X(L) can sensitize the parental cell line to staurosporine-induced apoptosis, and that overexpression of Bcl-2 or Bcl-X(L) can prevent the activation of caspase-3 in ρ(0)143B cells treated with staurosporine. Moreover, the inactivation of cathepsin B with CA074-Me significantly reduced cytochrome c release, caspase-3 activation, PARP-1 cleavage, and DNA fragmentation in mtDNA-depleted cells, whereas the pan-caspase inhibitor failed to completely prevent PARP-1 cleavage and DNA fragmentation in these cells, suggesting that caspase-independent mechanisms are responsible for cell death even if caspases are activated. Finally, we show that cathepsin B is released in the cytosol of ρ(0) cells in response to staurosporine, suggesting that the absence of mitochondrial activity leads to a facilitated permeabilization of lysosomal membranes in response to staurosporine.  相似文献   

9.
10.
In this study, we report a novel mechanism of action for a cytotoxic derivative of betulinic acid (BA). B10 is a semi-synthetic glycosylated derivative of BA selected for its enhanced cytotoxic activity. Interestingly, although B10 induces apoptosis, caspase-3 downregulation incompletely prevents B10-induced cell death, Bcl-2 overexpression fails to protect cells and DNA fragmentation rates do not reflect cell death rates in contrast to cytoplasmic membrane permeabilization. These results implicate that apoptotic and non-apoptotic cell death coexist upon B10 treatment. Unexpectedly, we found that B10 induces autophagy and also abrogates the autophagic flux. B10 destabilizes lysosomes as shown by Lysotracker Red staining and by cathepsin Z and B release from lysosomes into the cytoplasm. Consistently, the cathepsin inhibitor Ca074Me significantly decreases B10-induced cell death, further supporting the fact that the release of lysosomal enzymes contributes to B10-triggered cell death. Downregulation of ATG7, ATG5 or BECN1 by RNAi significantly decreases caspase-3 activation, lysosomal permeabilization and cell death. Thus, by concomitant induction of autophagy and inhibition of the autophagic flux, B10 turns autophagy into a cell death mechanism. These findings have important implications for the therapeutic exploitation of BA derivatives, particularly in apoptosis-resistant cancers.  相似文献   

11.
Active cathepsin B, in concert with other cellular proteases, has been implicated in the catabolic restructuring associated with myotube formation during skeletal myoblast cell differentiation (i.e., myogenesis). We have examined this role in differentiating myoblasts using the cell-permeable, cathepsin B selective inhibitor CA074Me. Cathepsin B activity levels in differentiating L6 rat myoblasts treated with CA074Me were significantly lower than levels in control myoblasts. Inhibition of cathepsin B activity by CA074Me occurred at each stage of differentiation and was dose related. Myotube size and number and induced levels of fusion-related creatine phosphokinase activity and myosin heavy-chain protein were reduced from 30 to 50% in CA074Me-treated myoblasts. These reductions were also dose related. In contrast, CA074Me did not affect levels of myogenin, an early marker of myogenesis, or levels of cathepsin L type and myokinase activities, two nonspecific enzymes. The negative effects associated with CA074Me were reversed when the drug was removed. Collectively, these data suggest that active cathepsin B plays a role in myoblast-myoblast fusion and consequently may be necessary for the complete expression of those genes associated with the fusion process.  相似文献   

12.
The regulated secretory pathway of neurons is the major source of extracellular A beta that accumulates in Alzheimer's disease (AD). Extracellular A beta secreted from that pathway is generated by beta-secretase processing of amyloid precursor protein (APP). Previously, cysteine protease activity was demonstrated as the major beta-secretase activity in regulated secretory vesicles of neuronal chromaffin cells. In this study, the representative cysteine protease activity in these secretory vesicles was purified and identified as cathepsin B by peptide sequencing. Immunoelectron microscopy demonstrated colocalization of cathepsin B with A beta in these vesicles. The selective cathepsin B inhibitor, CA074, blocked the conversion of endogenous APP to A beta in isolated regulated secretory vesicles. In chromaffin cells, CA074Me (a cell permeable form of CA074) reduced by about 50% the extracellular A beta released by the regulated secretory pathway, but CA074Me had no effect on A beta released by the constitutive pathway. Furthermore, CA074Me inhibited processing of APP into the COOH-terminal beta-secretase-like cleavage product. These results provide evidence for cathepsin B as a candidate beta-secretase in regulated secretory vesicles of neuronal chromaffin cells. These findings implicate cathepsin B as beta-secretase in the regulated secretory pathway of brain neurons, suggesting that inhibitors of cathepsin B may be considered as therapeutic agents to reduce A beta in AD.  相似文献   

13.
Intrapancreatic activation of trypsinogen is believed to play a critical role in the initiation of acute pancreatitis, but mechanisms responsible for intrapancreatic trypsinogen activation during pancreatitis have not been clearly defined. In previous in vitro studies, we have shown that intra-acinar cell activation of trypsinogen and acinar cell injury in response to supramaximal secretagogue stimulation could be prevented by the cell permeant cathepsin B inhibitor E64d (Saluja A, Donovan EA, Yamanaka K, Yamaguchi Y, Hofbauer B, and Steer ML. Gastroenterology 113: 304-310, 1997). The present studies evaluated the role of intrapancreatic trypsinogen activation, this time under in vivo conditions, in two models of pancreatitis by using another highly soluble cell permeant cathepsin B inhibitor, L-3-trans-(propylcarbamoyl)oxirane-2-carbonyl-L-isoleucyl-L-proline methyl ester (CA-074me). Intravenous administration of CA-074me (10 mg/kg) before induction of either secretagogue-elicited pancreatitis in mice or duct infusion-elicited pancreatitis in rats markedly reduced the extent of intrapancreatic trypsinogen activation and substantially reduced the severity of both pancreatitis models. These observations support the hypothesis that, during the early stages of pancreatitis, trypsinogen activation in the pancreas is mediated by the lysosomal enzyme cathepsin B. Our findings also suggest that pharmacological interventions that inhibit cathepsin B may prove useful in preventing acute pancreatitis or reducing its severity.  相似文献   

14.
We have previously reported that the in vivo anti-glioma efficacy of the anti-angiogenic receptor tyrosine kinase inhibitor cediranib is substantially enhanced via combination with the late-stage autophagy inhibitor quinacrine. The current study investigates the role of hypoxia and autophagy in combined cediranib/quinacrine efficacy. EF5 immunostaining revealed a prevalence of hypoxia in mouse intracranial 4C8 glioma, consistent with high-grade glioma. MTS cell viability assays using 4C8 glioma cells revealed that hypoxia potentiated the efficacy of combined cediranib/quinacrine: cell viability reductions induced by 1 µM cediranib +2.5 µM quinacrine were 78±7% (hypoxia) vs. 31±3% (normoxia), p<0.05. Apoptosis was markedly increased for cediranib/quinacrine/hypoxia versus all other groups. Autophagic vacuole biomarker LC3-II increased robustly in response to cediranib, quinacrine, or hypoxia. Combined cediranib/quinacrine increased LC3-II further, with the largest increases occurring with combined cediranib/quinacrine/hypoxia. Early stage autophagy inhibitor 3-MA prevented LC3-II accumulation with combined cediranib/quinacrine/hypoxia and substantially attenuated the associated reduction in cell viability. Combined efficacy of cediranib with bafilomycin A1, another late-stage autophagy inhibitor, was additive but lacked substantial potentiation by hypoxia. Substantially lower LC3-II accumulation was observed with bafilomycin A1 in comparison to quinacrine. Cediranib and quinacrine each strongly inhibited Akt phosphoryation, while bafilomycin A1 had no effect. Our results provide compelling evidence that autophagic vacuole accumulation plays a causal role in the anti-glioma cytotoxic efficacy of combined cediranib/quinacrine. Such accumulation is likely related to stimulation of autophagosome induction by hypoxia, which is prevalent in the glioma tumor microenvironment, as well as Akt signaling inhibition from both cediranib and quinacrine. Quinacrine''s unique ability to inhibit both Akt and autophagic vacuole degradation may enhance its ability to drive cytotoxic autophagic vacuole accumulation. These findings provide a rationale for a clinical evaluation of combined cediranib/quinacrine therapy for malignant glioma.  相似文献   

15.
E Kominami  T Ueno  D Muno  N Katunuma 《FEBS letters》1991,287(1-2):189-192
A selective inhibitor of cathepsin B, a derivative of E-64 (compound CA-074), and pepstatin-asialofetuin, a potent inhibitor of cathepsin D, were used for an in vivo study of the selective role of these proteinases in lysosomal proteolysis. Administration of compound CA-074 or pepstatinasialofetuin to rats caused only a slight shift of the lysosomal density and no increase in sequestered enzymes in the autolysosomal fraction, although cathepsin B or D activity in the liver was markedly inhibited. These treatments also had little effect on the inhibition of the degradation of endocytosed FITC-labeled asialofetuin. In contrast, leupeptin treatment caused marked inhibition of lysosomal degradation of endogenous and exogenous proteins. These results suggest a small contribution of cathepsins B and D to the initiation of lysosomal proteolysis.  相似文献   

16.
Autophagy is considered primarily a cell survival process, although it can also lead to cell death. However, the factors that dictate the shift between these 2 opposite outcomes remain largely unknown. In this work, we used Δ9-tetrahydrocannabinol (THC, the main active component of marijuana, a compound that triggers autophagy-mediated cancer cell death) and nutrient deprivation (an autophagic stimulus that triggers cytoprotective autophagy) to investigate the precise molecular mechanisms responsible for the activation of cytotoxic autophagy in cancer cells. By using a wide array of experimental approaches we show that THC (but not nutrient deprivation) increases the dihydroceramide:ceramide ratio in the endoplasmic reticulum of glioma cells, and this alteration is directed to autophagosomes and autolysosomes to promote lysosomal membrane permeabilization, cathepsin release and the subsequent activation of apoptotic cell death. These findings pave the way to clarify the regulatory mechanisms that determine the selective activation of autophagy-mediated cancer cell death.  相似文献   

17.
Previous studies reported by our group have introduced a new antitumoural drug called Biphosphinic Palladacycle Complex (BPC). In this paper we show that BPC causes apoptosis in leukaemia cells (HL60 and Jurkat), but not in normal human lymphocytes. IC50 values obtained for both cell lines using the MTT and trypan blue exclusion assays 5 h after BPC treatment were lower than 8.0 μM. Using metachromatic fluorophore, acridine orange, we observed that BPC elicited lysosomal rupture of leukaemic cells. Furthermore, BPC triggered caspase-3 and caspase-6 activation and apoptosis in cell lines, inducing chromatin condensation, apoptotic bodies, and DNA fragmentation. Interestingly, the lysosomal cathepsin B inhibitor CA074 markedly decreased BPC-induced caspase-3 and caspase-6 activation as well as cell death. Lysosomal BPC-induced membrane destabilisation was not dependent on reactive oxygen species generation, which was consistent with the absence of cellular HL60 and Jurkat membrane lipid peroxidation. We conclude that, following BPC treatment, lysosomal membrane rupture precedes cell death and the apoptotic signalling pathway is initiated by the release of cathepsin B in the cytoplasm of leukaemia cells. As no toxic effects for human lymphocytes were observed, we suggest that BPC is more selective for transformed cells, mainly due to their exacerbated lysosome expression.  相似文献   

18.
Authier F  Kouach M  Briand G 《FEBS letters》2005,579(20):4309-4316
IGF-I is degraded within the endosomal apparatus as a consequence of receptor-mediated endocytosis. However, the nature of the responsible protease and the position of the cleavage sites in the IGF-I molecule remain undefined. In vitro proteolysis of IGF-I using an endosomal lysate required an acidic pH and was sensitive to CA074, an inhibitor of the cathepsin B enzyme. By nondenaturing immunoprecipitation, the acidic IGF-I-degrading activity was attributed to the luminal species of endosomal cathepsin B with apparent molecular masses of 32- and 28-kDa. The cathepsin B precursor, procathepsin B, was processed in vitro within isolated endosomes at pH 5 or at 7 in the presence of ATP, the substrate of the vacuolar H(+)-ATPase. The rate of IGF-I hydrolysis using an endosomal lysate or pure cathepsin B was found to be optimal at pH 5-6 and moderate at pH 4 and 7. Competition studies revealed that EGF and IGF-I share a common binding site on the cathepsin B enzyme, with native IGF-I displaying the lowest affinity for the protease (IC50 approximately 1.5 microM). Hydrolysates of IGF-I generated at low pH by endosomal IGF-I-degrading activity and analyzed by reverse-phase HPLC and mass spectrometry revealed cleavage sites at Lys68-Ser69, Ala67-Lys68, Pro66-Ala67 and Lys65-Pro66 within the C-terminal D-domain of IGF-I. Treatment of human HepG2 hepatoma cells with the cathepsin B proinhibitor CA074-Me reduced, in vivo, the intracellular degradation of internalized [125I]IGF-I and, in vitro, the degradation of exogenous [125I]IGF-I incubated with the cell-lysates at pH 5. Inhibitors of cathepsin B and pro-cathepsin B processing, which abolish endosomal proteolysis of IGF-I and alter tumor cell growth and IGF-I receptor signalling, merit investigation as antimetastatic drugs.  相似文献   

19.
Summary The effects were measured and compared of three nonselective cysteine cathepsin inhibitors (leupeptin, trans-Epoxysuccinyl-l-Leucylamido(4-guanidino)-butane (E-64), and Z-Phe-Ala-CH2F) and a selective cathepsin B inhibitor, CA074Me, on the intracellular processing of 125I-labeled human recombinant Interleukin 6 (IL-6) by HepG2 cells. The uptake and processing of 125I-IL-6 by cells treated with inhibitors was followed over a 7-h period. All inhibitors caused an increased residence time of IL-6 inside the cell and a corresponding decrease in the output of non-trichloroacetic acid-precipitable fragments of radiolabeled protein. Maximal effect was achieved with leupeptin at 200 μM, with which the rate of IL-6 digestion was reduced to 50% that of control cells. The specific inhibitor CA074Me was the least effective in slowing the intracellular processing of IL-6. The effects of all of the inhibitors on the production of haptoglobin, either stimulated by IL-6 or basal, was negligible over a similar time period, indicating continued cell viability. The data from this model suggest that cathepsin inhibitors would not interfere with lysosomal processing to an extent which would prohibit the development of selective and potent cathepsin inhibitors for the treatment of diseases in which individual cysteine cathepsins play clearly pathophysiological roles.  相似文献   

20.
Cathepsin B in osteoblasts   总被引:2,自引:0,他引:2  
Active cathepsin B has been found in cell extract and medium of human osteoblast-like cells and MG-63 cells. The released form is stable at neutral and alkaline pH and, in both cell types, intracellular and extracellular cathepsin B activities are increased by interleukin-1 beta (IL-1beta) and parathyroid hormone (PTH). To evaluate the physiological role of cathepsin B in osteoblasts, we investigated the production and secretion of this enzyme in normal human synovial fibroblasts and modulation by IL-1beta and PTH. Lactate secretion concurrent with release of cathepsin B and comparable responses in osteoblasts were also examined. Our data show that synovial fibroblasts respond differently to treatment with the two agents, suggesting a cell-specific regulation of cathepsin B and possible involvement in osteoblast physiology. Cathepsin B involvement was then evaluated in the activation of plasminogen activator (PA) in MG-63 cells using two specific inhibitors of cathepsin B, CA074 and CA074-Me, in constitutive conditions and after treatment with IL-1beta. As results of PA activity obtained in the presence of IL-beta were in contrast with previous reports, we examined the activities of PA, pro-PA activated with trypsin, and plasmin in cell extract and media of MG-63 cells after 24-h treatment with IL-1beta. Results show that in normal conditions and in the presence of IL-1beta, cathepsin B is involved in the activation of PA. Moreover, IL-1beta stimulates PA, pro-PA activated by trypsin, and plasmin activity in medium, whereas in cell extract it stimulates pro-PA activated by trypsin and plasmin activity. IL-1beta has no effect on cell extract-associated PA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号