首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Ulvan is a sulfated polysaccharide found in the cell wall of the green algae Ulva. We first isolated several ulvan-utilizing Alteromonas sp. from the feces of small marine animals. The strain with the highest ulvan-degrading activity, KUL17, was analyzed further. We identified a 55-kDa ulvan-degrading protein secreted by this strain and cloned the gene encoding for it. The deduced amino acid sequence indicated that the enzyme belongs to polysaccharide lyase family 24 and thus the protein was named ulvan lyase. The predicted molecular mass of this enzyme is 110 kDa, which is different from that of the identified protein. By deletion analysis, the catalytic domain was proven to be located on the N-terminal half of the protein. KUL17 contains two ulvan lyases, one long and one short, but the secreted and cleaved long ulvan lyase was demonstrated to be the major enzyme for ulvan degradation.  相似文献   

3.
An -N-acetylgalactosaminidase IV able to remove blood type specificity of human A(II)-erythrocytes and not effecting B(III)-erythrocytes was isolated from the marine bacterium Arenibacter latericius KMM 426T. The -N-acetylgalactosaminidase IV preparation exhibits high activity during inhibition of hemagglutination with blood group substance A containing determinants analogous to A-erythrocytes. The enzyme has a pH optimum from 7.0 to 8.0 and completely retains its activity during 30-min heating at 50°C and for a week at 20°C. The enzyme can be stored under the sterile conditions for any length of time at 4°C, but it does not withstand freezing. The -N-acetylgalactosaminidase is resistant to NaCl; for p-nitrophenyl--N-acetyl-D-galactosaminide, the K m is 0.38 mM. The molecular mass of the enzyme determined by gel filtration is 84 kD.  相似文献   

4.
The committed biosynthetic reaction to benzoyl-coenzyme A in the marine bacterium "Streptomyces maritimus" is carried out by the novel prokaryotic phenylalanine ammonia lyase (PAL) EncP, which converts the primary amino acid L-phenylalanine to trans-cinnamic acid. Recombinant EncP is specific for L-phenylalanine and shares many biochemical features with eukaryotic PALs, which are substantially larger proteins by approximately 200 amino acid residues.  相似文献   

5.
6.
The O-specific polysaccharide was isolated from the lipopolysaccharide of a marine bacterium Oceanisphaeralitoralis KMM 3654(T) and studied by chemical methods along with (1)H and (13)C NMR spectroscopy. The following new structure of the O-specific polysaccharide of O. litoralis containing D-glucose and two residues of 2-acetamido-2-deoxy-D-mannuronic acid was established: →4)-α-D-Glcp-(1→4)-β-D-ManpNAcA-(1→4)-β-D-ManpNAcA-(1→.  相似文献   

7.
Extracellular alginate lyase secreted by marine Vibrio sp.YWA,isolated from decayedLaminaria japonica,was purified by a combination of ammonium sulfate precipitation and diethylaminoethyl-Sephacel column chromatography.The results show that the molecular mass of alginate lyase wasapproximately 62.5 kDa,with an optimal pH and temperature at pH 7.0 and 25℃,respectively.K_m wasapproximately 72.73 g/L.The activity of the enzyme was enhanced by EDTA and Zn~(2 ),but inhibited by Ba~(2 ).The substrates specificity analysis shows that it was specific for hydrolyzing poly-β-D-1,4-mannuronate inalginate.  相似文献   

8.
This is a report on the purification and characterization of an algal dimethylsulfoniopropionate (DMSP) lyase. This enzyme, also found in bacteria, is responsible for producing most of the dimethylsulfide (DMS) in marine environments. It was purified from the green macroalga, Ulva curvata (Kützing) De Toni. Initial in-vivo experiments showed that DMSP lyase activity from endogenous DMSP in Ulva increased for 24 h and then decreased as the culture aged and endogenous DMSP levels were depleted. When amended with exogenous DMSP, rates of DMSP lyase activity remained high even when the culture was 5 d old. Following disruption of the DMSP-depleted U. curvata cells by grinding, a soluble DMSP lyase was purified. This enzyme is a monomer of 78 kDa which has a K m for DMSP of 0.52 mM. Soluble DMSP lyase had an optimum pH of 8 and an optimum osmotic strength of 75 mM NaCl. Following disruption of the algae by either grinding with sand or blending, and washing out the soluble enzyme, the green tissue, when treated with the non-ionic detergent, Triton X-100, solubilized additional DMSP lyase activity. Three hydrophobic variant forms of Ulva DMSP lyase were isolated and partially characterized from the detergent-solubilized activity. While the molecular and kinetic properties of the algal enzyme are different from the bacterial enzymes we purified earlier, both the soluble and membrane-bound forms did, nevertheless, cross-react with antibodies raised against the bacterial (Alcaligenes strain M3A) DMSP lyase.Abbreviations DMS dimethylsulfide - DMSP dimethylsulfoniopropionate This paper is dedicated to D.I. Arnon (1910–1995). We thank Dr. Richard Zingmark for helpful discussions on the speciation of the natural algal samples used in these experiments, and Robin Krest for collecting samples for us on numerous occasions. This work was supported, in part, by a grant from the University of South Carolina Venture Fund.  相似文献   

9.
The structure of an acidic polysaccharide from Pseudoalteromonas aliena type strain KMM 3562(T) has been elucidated. The polysaccharide was studied by component analysis, (1)H and (13)C NMR spectroscopy, including 2D NMR experiments. A (1)H, (13)C band-selective constant-time heteronuclear multiple-bond connectivity experiment was used to determine amide linkages, between serine and uronic acid (UA) residues, via (3)J(H,C) correlations between Ser-alphaH and UA-C-6. It was found that the polysaccharide consists of pentasaccharide repeating units with the following structure: [carbohydrate structure]; see text.  相似文献   

10.
The bacterium Klebsiella aerogenes (type 25) produced an inducible alginate lyase, whose major activity was located intracellularly during all growth phases. The enzyme was purified from the soluble fraction of sonicated cells by ammonium sulfate precipitation, anion- and cation-exchange chromatography and gel filtration. The apparent molecular weight of purified alginate lyase of 28,000 determined by gel filtration and of 31,600 determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that the active enzyme was composed of a single polypeptide. The alginate lyase displayed a pH optimum around 7.0 and a temperature optimum around 37°C. The purified enzyme depolymerized alginate by a lyase reaction in an endo manner releasing products which reacted in the thiobarbituric acid assay and absorbed strongly in the ultraviolet region at 235 nm. The alginate lyase was specific for guluronic acidrich alginate preparations. Propylene glycol esters of alginate and O-acetylated bacterial alginates were poorly degraded by the lyase compared with unmodified polysaccharide. The guluronate-specific lyase activity was applied in an enzymatic method to detect mannuronan C-5 epimerase in three different mucoid (alginate-synthesizing) strains of Pseudomonas aeruginosa. This enzyme which converts polymannuronate to alginate could not be demonstrated either extracellularly or intracellularly in all strains suggesting the absence of a polymannuronate-modifying enzyme in P. aeruginosa.Abbreviations poly(ManA) (1–4)--D-mannuronan - poly(GulA) (1–4)--L-guluronan - TBA 2-thiobarbituric acid  相似文献   

11.
An unidentified pseudomonad isolated by enrichment procedures from decomposing seaweed was grown in defined medium containing sodium alginate as the sole carbon source. The alginate lyase recovered from disrupted bacterial cells was purified by a procedure of (NH4)2SO4 precipitation, gel filtration and ion-exchange chromatography. From sodium dodecyl sulphate/polyacrylamide-gel-electrophoresis experiments a mol.wt. of about 50 000 was determined. The enzyme was active against both algal and bacterial alginate preparations. Kinetic studies together with analysis of the unsaturated oligouronide products of alginate lyase action indicated the enzyme was specific for guluronic acid-containing regions of the macromolecular substrate. The specificity of the enzyme can be used to give information about the primary composition of alginate samples.  相似文献   

12.
An acidic O-specific polysaccharide containing D-glucuronic acid (D-GlcA), 2,3-diacetamido-2,3-dideoxy-D-glucuronic acid (D-GlcNAc3NAcA), 2,3-diacetamido-2,3-dideoxy-D-mannuronoyl-L-alanine (D-ManNAc3NAcA6Ala), and 2-acetamido-2,4, 6-trideoxy-4-[(S)-3-hydroxybutyramido]-D-glucose (D-QuiNAc4NAcyl) was obtained by mild acid degradation of the lipopolysaccharide of the bacterium Pseudoalteromonas sp. KMM 634 followed by gel-permeation chromatography. The polysaccharide was cleaved selectively with a new solvolytic agent, trifluoromethanesulfonic acid, to give a disaccharide and a trisaccharide with D-GlcNAc3NAcA at the reducing end. The borohydride-reduced oligosaccharides and the initial polysaccharide were studied by GLC-MS and 1H- and 13C-NMR spectroscopy, and the following structure of the linear tetrasaccharide repeating unit of the polysaccharide was established: -->3)-alpha-D-QuipNAc4Ac4NAcyl-(1-->4)-beta-D-ManpNAc3NAcA6Ala+ ++-(1-->4)-b eta-D-GlcpNAc3NAc3NAcA-(1-->4)-beta-D-GlcpA-(1-->.  相似文献   

13.
14.
The extracellular pectate lyase (EC 4.2.2.2) of a nonsporulating Amycolata sp. was purified to homogeneity by anion- and cation-exchange chromatographies followed by hydrophobic interaction chromatography. The enzyme cleaved polygalacturonate but not highly esterified pectin in a random endolytic transeliminative mechanism that led to the formation of a wide range of 4,5-unsaturated oligogalacturonates. As shown by high-performance anion-exchange chromatography and pulsed amperometric detection, these unsaturated oligogalacturonates were further depolymerized by the enzyme to the unsaturated dimer and trimer as final products. The pectate lyase had a molecular weight of 31,000 determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and a molecular mass of 30,000 Da determined by matrix-assisted laser desorption ionization mass spectrometry. The isoelectric point of the protein was 10. Maximum activity occurred at pH 10.25. Calcium was essential for activity, and EDTA inactivated the enzyme under standard assay conditions. Interestingly, EDTA did not inhibit the ability of the enzyme to cleave the native pectin (protopectin) of ramie (Boehmeria nivea) fibers. The Km value with sodium polygalacturonate as the substrate was 0.019 g liter-1. The purified enzyme lost its activity after a 1-h incubation at 50 degrees C but was stabilized by calcium or polygalacturonate. The N-terminal sequence showed high similarity within a stretch of 13 amino acids to the N-terminal sequences of pectate lyases PLa and PLe from Erwinia chrysanthemi. The Amycolata sp. did not produce additional isozymes of pectate lyase but produced further activities of pectinesterase, xylanase, and carboxymethyl cellulase when grown in a medium with decorticated bast fibers from ramie as the sole carbon source.  相似文献   

15.
Proteorhodopsin phototrophy is expected to have considerable impact on the ecology and biogeochemical roles of marine bacteria. However, the genetic features contributing to the success of proteorhodopsin-containing bacteria remain largely unknown. We investigated the genome of Dokdonia sp. strain MED134 (Bacteroidetes) for features potentially explaining its ability to grow better in light than darkness. MED134 has a relatively high number of peptidases, suggesting that amino acids are the main carbon and nitrogen sources. In addition, MED134 shares with other environmental genomes a reduction in gene copies at the expense of important ones, like membrane transporters, which might be compensated by the presence of the proteorhodopsin gene. The genome analyses suggest Dokdonia sp. MED134 is able to respond to light at least partly due to the presence of a strong flavobacterial consensus promoter sequence for the proteorhodopsin gene. Moreover, Dokdonia sp. MED134 has a complete set of anaplerotic enzymes likely to play a role in the adaptation of the carbon anabolism to the different sources of energy it can use, including light or various organic matter compounds. In addition to promoting growth, proteorhodopsin phototrophy could provide energy for the degradation of complex or recalcitrant organic matter, survival during periods of low nutrients, or uptake of amino acids and peptides at low concentrations. Our analysis suggests that the ability to harness light potentially makes MED134 less dependent on the amount and quality of organic matter or other nutrients. The genomic features reported here may well be among the keys to a successful photoheterotrophic lifestyle.  相似文献   

16.
Double-stranded DNA-packaging in icosahedral bacteriophages is believed to be driven by a packaging "machine" constituted by the portal protein and the two packaging/terminase proteins assembled at the unique portal vertex of the empty prohead shell. Although ATP hydrolysis is evidently the principal driving force, which component of the packaging machinery functions as the translocating ATPase has not been elucidated. Evidence suggests that the large packaging subunit is a strong candidate for the translocating ATPase. We have constructed new phage T4 terminase recombinants under the control of phage T7 promoter and overexpressed the packaging/terminase proteins gp16 and gp17 in various configurations. The hexahistidine-tagged-packaging proteins were purified to near homogeneity by Ni(2+)-agarose chromatography and were shown to be highly active for packaging DNA in vitro. The large packaging subunit gp17 but not the small subunit gp16 exhibited an ATPase activity. Although gp16 lacked ATPase activity, it enhanced the gp17-associated ATPase activity by >50-fold. The gp16 enhancement was specific and was due to an increased catalytic rate for ATP hydrolysis. A phosphorylated gp17 was demonstrated under conditions of low catalytic rates but not under high catalytic rates in the presence of gp16. The data are consistent with the hypothesis that a weak ATPase is transformed into a translocating ATPase of high catalytic capacity after assembly of the packaging machine.  相似文献   

17.
An extracellular polygalacturonase (PGII) from Trichoderma harzianum was purified to homogeneity by two chromatography steps using DEAE-Sepharose and Sephacryl S-200. The molecular weight of T. harzianum PGII was 31,000 Da by gel filtration and SDS-PAGE. PGII had isoelectric point of 4.5 and optimum pH of 5.0. PGII was very stable at the pH 5.0. The extent of hydrolysis of different pectins by enzyme was decreased with increasing of degree of esterification (DE). PGII had very low activity toward non-pectic polysaccharides. The apparent K(m) value and K(cat) value for hydrolyzing polygalacturonic acid (PGA) were 3.4 mg/ml and 592 s(-1), respectively. PGII was found to have temperature optimum at 40 degrees C and was approximately stable up to 30 degrees C for 60 min of incubation. All the examined metal cations showed inhibitory effects on the enzyme activity. A 1,10-phenanthroline, Tween 20, Tween 80, Triton X-100 and SDS had no effect on the enzyme activity. The rate of enzyme catalyzed reduction of viscosity of solutions of PGA or pectin was higher three times than the rate of release of reducing sugars indicating that the enzyme had an endo-action. The storage stability of the enzyme in liquid and powder forms was studied, where the activity of the powder form was stable up to 1 year. These properties of T. harzianum PGII with appreciable activity would be potentially novel source of enzyme for food processing.  相似文献   

18.
An l-xylulose reductase identified from the genome sequence of the filamentous fungus Neurospora crassa was heterologously expressed in Escherichia coli as a His(6) tag fusion protein, purified, and characterized. The enzyme may be used in the production of xylitol from the major pentose components of hemicellulosic waste, d-xylose and l-arabinose.  相似文献   

19.
Root-knot nematodes (Meloidogynejavanica) are obligate sedentary endoparasites that must penetrate the host root to initiate their life cycle. Many enzymes are secreted by the nematode to facilitate host penetration; required enzymes may include pectate lyases and cellulases. Using differential screening, a class III pectate lyase, Mj-pel-1 (M. javanica pectate lyase 1), was cloned from a library enriched for esophageal gland genes. DNA gel blotting confirmed that the Mj-pel-1 gene was of nematode origin and a member of a small multigene family. In situ hybridization localized the expression of Mj-pel-1 to the basal cells of the esophageal glands, while immunolocalization detected the protein in the esophageal glands as well as on the exterior of the nematode, confirming that the protein is secreted. When MJ-PEL-1 was expressed in Pichia pastoris, the resulting protein was active. The pH optimum of MJ-PEL-1 was 10.0, and the enzyme was five times more active on pectate than on pectin. Like other class III pectate lyases, MJ-PEL-1 also displayed an absolute requirement for Ca2+. The root-knot nematode migrates through the middle lamella of the plant root; therefore, MJ-PEL-1 may be an important enzyme early in the infection process.  相似文献   

20.
The O-specific polysaccharide was obtained by mild acid degradation of the lipopolysaccharide of the marine bacterium Arenibacter palladensis type strain KMM 3961T and studied by chemical methods and 1H and 13C NMR spectroscopy including 2D COSY, TOCSY, 1H,13C HSQC, and HMBC experiments. The polysaccharide was shown to consist of tetrasaccharide repeating units containing two mannose residues (Man), one 2-acetamido-2-deoxy-D-galactose residue (D-GalNAc), and one 2-acetamido-2-deoxy-L-galacturonic acid residue (L-GalNAcA) and having the following structure: ? 2) - a- D - Manp - (1 ? 6) - a- D - Manp - (1 ? 4) - a- L - GalpNAcA - (1 ? 3) - b- D - GalpNAc - (1 ?\to 2) - \alpha - D - Manp - (1 \to 6) - \alpha - D - Manp - (1 \to 4) - \alpha - L - GalpNAcA - (1 \to 3) - \beta - D - GalpNAc - (1 \to.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号