首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Salt-bridges play a unique role in the structural and functional stability of proteins, especially under harsh environments. How these salt-bridges contribute to the overall thermodynamic stability of protein structure and function across different domains of life is elusive still date. To address the issue, statistical analyses on the energies of salt-bridges, involved in proteins' structure and function, are performed across three domains of life, that is, archaea, eubacteria, and eukarya. Results show that although the majority of salt-bridges are stable and conserved, yet the stability of archaeal proteins (∆∆Gnet = −5.06 ± 3.8) is much more than that of eubacteria (∆∆Gnet = −3.7 ± 2.9) and eukarya (∆∆Gnet = −3.54 ± 3.1). Unlike earlier study with archaea, in eukarya and eubacteria, not all buried salt-bridge in our dataset are stable. Buried salt-bridges play surprising role in protein stability, whose variations are clearly observed among these domains. Greater desolvation penalty of buried salt-bridges is compensated by stable network of salt-bridges apart from equal contribution of bridge and background energy terms. On the basis proteins' secondary structure, topology, and evolution, our observation shows that salt-bridges when present closer to each other in sequence tend to form a greater number. Overall, our comparative study provides insight into the role of specific electrostatic interactions in proteins from different domains of life, which we hope, would be useful for protein engineering and bioinformatics study.  相似文献   

2.
Molecular models of six anthracycline antibiotics and their complexes with 32 distinct DNA octamer sequences were created and analyzed using HINT (Hydropathic INTeractions) to describe binding. The averaged binding scores were then used to calculate the free energies of binding for comparison with experimentally determined values. In parsing our results based on specific functional groups of doxorubicin, our calculations predict a free energy contribution of –3.6 ± 1.1 kcal mol–1 (experimental –2.5 ± 0.5 kcal mol–1) from the groove binding daunosamine sugar. The net energetic contribution of removing the hydroxyl at position C9 is –0.7 ± 0.7 kcal mol–1 (–1.1 ± 0.5 kcal mol–1). The energetic contribution of the 3′ amino group in the daunosamine sugar (when replaced with a hydroxyl group) is –3.7 ± 1.1 kcal mol–1 (–0.7 ± 0.5 kcal mol–1). We propose that this large discrepancy may be due to uncertainty in the exact protonation state of the amine. The energetic contribution of the hydroxyl group at C14 is +0.4 ± 0.6 kcal mol–1 (–0.9 ± 0.5 kcal mol–1), largely due to unfavorable hydrophobic interactions between the hydroxyl oxygen and the methylene groups of the phosphate backbone of the DNA. Also, there appears to be considerable conformational uncertainty in this region. This computational procedure calibrates our methodology for future analyses where experimental data are unavailable.  相似文献   

3.
Delineating the kinetic and thermodynamic factors which contribute to the stability of transmembrane β-barrels is critical to gain an in-depth understanding of membrane protein behavior. Human mitochondrial voltage-dependent anion channel isoform 2 (hVDAC-2), one of the key anti-apoptotic eukaryotic β-barrel proteins, is of paramount importance, owing to its indispensable role in cell survival. We demonstrate here that the stability of hVDAC-2 bears a strong kinetic contribution that is dependent on the absolute micellar concentration used for barrel folding. The refolding efficiency and ensuing stability is sensitive to the lipid-to-protein (LPR) ratio, and displays a non-linear relationship, with both low and high micellar amounts being detrimental to hVDAC-2 structure. Unfolding and aggregation process are sequential events and show strong temperature dependence. We demonstrate that an optimal lipid-to-protein ratio of 2600∶1 – 13000∶1 offers the highest protection against thermal denaturation. Activation energies derived only for lower LPRs are ∼17 kcal mol−1 for full-length hVDAC-2 and ∼23 kcal mol−1 for the Cys-less mutant, suggesting that the nine cysteine residues of hVDAC-2 impart additional malleability to the barrel scaffold. Our studies reveal that cysteine residues play a key role in the kinetic stability of the protein, determine barrel rigidity and thereby give rise to strong micellar association of hVDAC-2. Non-linearity of the Arrhenius plot at high LPRs coupled with observation of protein aggregation upon thermal denaturation indicates that contributions from both kinetic and thermodynamic components stabilize the 19-stranded β-barrel. Lipid-protein interaction and the linked kinetic contribution to free energy of the folded protein are together expected to play a key role in hVDAC-2 recycling and the functional switch at the onset of apoptosis.  相似文献   

4.
Chan CH  Yu TH  Wong KB 《PloS one》2011,6(6):e21624
Most thermophilic proteins tend to have more salt bridges, and achieve higher thermostability by up-shifting and broadening their protein stability curves. While the stabilizing effect of salt-bridge has been extensively studied, experimental data on how salt-bridge influences protein stability curves are scarce. Here, we used double mutant cycles to determine the temperature-dependency of the pair-wise interaction energy and the contribution of salt-bridges to ΔCp in a thermophilic ribosomal protein L30e. Our results showed that the pair-wise interaction energies for the salt-bridges E6/R92 and E62/K46 were stabilizing and insensitive to temperature changes from 298 to 348 K. On the other hand, the pair-wise interaction energies between the control long-range ion-pair of E90/R92 were negligible. The ΔCp of all single and double mutants were determined by Gibbs-Helmholtz and Kirchhoff analyses. We showed that the two stabilizing salt-bridges contributed to a reduction of ΔCp by 0.8–1.0 kJ mol−1 K−1. Taken together, our results suggest that the extra salt-bridges found in thermophilic proteins enhance the thermostability of proteins by reducing ΔCp, leading to the up-shifting and broadening of the protein stability curves.  相似文献   

5.
Carbohydrate – receptor interactions are an integral part of biological events. They play an important role in many cellular processes, such as cell-cell adhesion, cell differentiation and in-cell signaling. Carbohydrates can interact with a receptor by using several types of intermolecular interactions. One of the most important is the interaction of a carbohydrate''s apolar part with aromatic amino acid residues, known as dispersion interaction or CH/π interaction. In the study presented here, we attempted for the first time to quantify how the CH/π interaction contributes to a more general carbohydrate - protein interaction. We used a combined experimental approach, creating single and double point mutants with high level computational methods, and applied both to Ralstonia solanacearum (RSL) lectin complexes with α-l-Me-fucoside. Experimentally measured binding affinities were compared with computed carbohydrate-aromatic amino acid residue interaction energies. Experimental binding affinities for the RSL wild type, phenylalanine and alanine mutants were −8.5, −7.1 and −4.1 kcal.mol−1, respectively. These affinities agree with the computed dispersion interaction energy between carbohydrate and aromatic amino acid residues for RSL wild type and phenylalanine, with values −8.8, −7.9 kcal.mol−1, excluding the alanine mutant where the interaction energy was −0.9 kcal.mol−1. Molecular dynamics simulations show that discrepancy can be caused by creation of a new hydrogen bond between the α-l-Me-fucoside and RSL. Observed results suggest that in this and similar cases the carbohydrate-receptor interaction can be driven mainly by a dispersion interaction.  相似文献   

6.
The inward rectifier voltage-gated potassium channel hERG is of primary importance for the regulation of the membrane potential of cardiomyocytes. Unlike most voltage-gated K+-channels, hERG shows a low elementary conductance at physiological voltage and potassium concentration. To investigate the molecular features underlying this unusual behavior, we simulated the ion conduction through the selectivity filter at a fully atomistic level by means of molecular dynamics-based methods, using a homology-derived model. According to our calculations, permeation of potassium ions can occur along two pathways, one involving site vacancies inside the filter (showing an energy barrier of about 6 kcal mol−1), and the other characterized by the presence of a knock-on intermediate (about 8 kcal mol−1). These barriers are indeed in accordance with a low conductance behavior, and can be explained in terms of a series of distinctive structural features displayed by the hERG ion permeation pathway.  相似文献   

7.
The folding stability of a protein is governed by the free-energy difference between its folded and unfolded states, which results from a delicate balance of much larger but almost compensating enthalpic and entropic contributions. The balance can therefore easily be shifted by an external disturbance, such as a mutation of a single amino acid or a change of temperature, in which case the protein unfolds. Effects such as cold denaturation, in which a protein unfolds because of cooling, provide evidence that proteins are strongly stabilized by the solvent entropy contribution to the free-energy balance. However, the molecular mechanisms behind this solvent-driven stability, their quantitative contribution in relation to other free-energy contributions, and how the involved solvent thermodynamics is affected by individual amino acids are largely unclear. Therefore, we addressed these questions using atomistic molecular dynamics simulations of the small protein Crambin in its native fold and a molten-globule-like conformation, which here served as a model for the unfolded state. The free-energy difference between these conformations was decomposed into enthalpic and entropic contributions from the protein and spatially resolved solvent contributions using the nonparametric method Per|Mut. From the spatial resolution, we quantified the local effects on the solvent free-energy difference at each amino acid and identified dependencies of the local enthalpy and entropy on the protein curvature. We identified a strong stabilization of the native fold by almost 500 kJ mol−1 due to the solvent entropy, revealing it as an essential contribution to the total free-energy difference of (53 ± 84) kJ mol−1. Remarkably, more than half of the solvent entropy contribution arose from induced water correlations.  相似文献   

8.
The thermodynamics of base pairing is of fundamental importance. Fluorinated base analogs are valuable tools for investigating pairing interactions. To understand the influence of direct base–base interactions in relation to the role of water, pairing free energies between natural nucleobases and fluorinated analogs are estimated by potential of mean force calculations. Compared to pairing of AU and GC, pairing involving fluorinated analogs is unfavorable by 0.5–1.0 kcal mol−1. Decomposing the pairing free energies into enthalpic and entropic contributions reveals fundamental differences for Watson–Crick pairs compared to pairs involving fluorinated analogs. These differences originate from direct base–base interactions and contributions of water. Pairing free energies of fluorinated base analogs with natural bases are less unfavorable by 0.5–1.0 kcal mol−1 compared to non-fluorinated analogs. This is attributed to stabilizing C–FH–N dipolar interactions and stronger NH–C hydrogen bonds, demonstrating direct and indirect influences of fluorine. 7-methyl-7H-purine and its 9-deaza analog (Z) have been suggested as members of a new class of non-fluorinated base analogs. Z is found to be the least destabilizing universal base in the context of RNA known to date. This is the first experimental evidence for nitrogen-containing heterocylces as bioisosteres of aromatic rings bearing fluorine atoms.  相似文献   

9.
Evolutionary conservation of substructure architecture between yeast iso-1-cytochrome c and the well-characterized horse cytochrome c is studied with limited proteolysis, the alkaline conformational transition and global unfolding with guanidine-HCl. Mass spectral analysis of limited proteolysis cleavage products for iso-1-cytochrome c show that its least stable substructure is the same as horse cytochrome c. The limited proteolysis data yield a free energy of 3.8 ± 0.4 kcal mol−1 to unfold the least stable substructure compared with 5.05 ± 0.30 kcal mol−1 for global unfolding of iso-1-cytochrome c. Thus, substructure stabilities of iso-1-cytochrome c span only ∼1.2 kcal mol−1 compared with ∼8 kcal mol−1 for horse cytochrome c. Consistent with the less cooperative folding thus expected for the horse protein, the guanidine-HCl m-values are ∼3 kcal mol−1M−1 versus ∼4.5 kcal mol−1M−1 for horse versus yeast cytochrome c. The tight free energy spacing of the yeast cytochrome c substructures suggests that its folding has more branch points than for horse cytochrome c. Studies on a variant of iso-1-cytochrome c with an H26N mutation indicate that the least and most stable substructures unfold sequentially and the two least stable substructures unfold independently as for horse cytochrome c. Thus, important aspects of the substructure architecture of horse cytochrome c, albeit compressed energetically, are preserved evolutionally in yeast iso-1-cytochrome c.  相似文献   

10.
Do salt bridges stabilize proteins? A continuum electrostatic analysis   总被引:30,自引:21,他引:9       下载免费PDF全文
The electrostatic contribution to the free energy of folding was calculated for 21 salt bridges in 9 protein X-ray crystal structures using a continuum electrostatic approach with the DELPHI computer-program package. The majority (17) were found to be electrostatically destabilizing; the average free energy change, which is analogous to mutation of salt bridging side chains to hydrophobic isosteres, was calculated to be 3.5 kcal/mol. This is fundamentally different from stability measurements using pKa shifts, which effectively measure the strength of a salt bridge relative to 1 or more charged hydrogen bonds. The calculated effect was due to a large, unfavorable desolvation contribution that was not fully compensated by favorable interactions within the salt bridge and between salt-bridge partners and other polar and charged groups in the folded protein. Some of the salt bridges were studied in further detail to determine the effect of the choice of values for atomic radii, internal protein dielectric constant, and ionic strength used in the calculations. Increased ionic strength resulted in little or no change in calculated stability for 3 of 4 salt bridges over a range of 0.1-0.9 M. The results suggest that mutation of salt bridges, particularly those that are buried, to "hydrophobic bridges" (that pack at least as well as wild type) can result in proteins with increased stability. Due to the large penalty for burying uncompensated ionizable groups, salt bridges could help to limit the number of low free energy conformations of a molecule or complex and thus play a role in determining specificity (i.e., the uniqueness of a protein fold or protein-ligand binding geometry).  相似文献   

11.
To optimize oligonucleotide probe design criteria, PCR products with different similarities to probes were hybridized to a functional gene microarray designed to detect homologous genes from different organisms. In contrast to more restrictive probe designs based on a single criterion, simultaneous consideration of the percent similarity (≤90%), the length of identical sequence stretches (≤20 bases), and the binding free energy (≥−35 kcal mol−1) was found to be predictive of probe specificity.  相似文献   

12.
Curcuma longa rhizome lectin, of non-seed origin having antifungal, antibacterial and α-glucosidase inhibitory activities, forms a homodimer with high thermal stability as well as acid tolerance. Size exclusion chromatography and dynamic light scattering show it to be a dimer at pH 7, but it converts to a monomer near pH 2. Circular dichroism spectra and fluorescence emission maxima are virtually indistinguishable from pH 7 to 2, indicating secondary and tertiary structures remain the same in dimer and monomer within experimental error. The tryptophan environment as probed by acrylamide quenching data yielded very similar data at pH 2 and pH 7, implying very similar folding for monomer and dimer. Differential scanning calorimetry shows a transition at 350.3 K for dimer and at 327.0 K for monomer. Thermal unfolding and chemical unfolding induced by guanidinium chloride for dimer are both reversible and can be described by two-state models. The temperatures and the denaturant concentrations at which one-half of the protein molecules are unfolded, are protein concentration-dependent for dimer but protein concentration-independent for monomer. The free energy of unfolding at 298 K was found to be 5.23 Kcal mol−1 and 14.90 Kcal mol−1 for the monomer and dimer respectively. The value of change in excess heat capacity upon protein denaturation (ΔCp) is 3.42 Kcal mol−1 K−1 for dimer. The small ΔCp for unfolding of CLA reflects a buried hydrophobic core in the folded dimeric protein. These unfolding experiments, temperature dependent circular dichroism and dynamic light scattering for the dimer at pH 7 indicate its higher stability than for the monomer at pH 2. This difference in stability of dimeric and monomeric forms highlights the contribution of inter-subunit interactions in the former.  相似文献   

13.
DNA bending can be promoted by reducing the net negative electrostatic potential around phosphates on one face of the DNA, such that electrostatic repulsion among phosphates on the opposite face drives bending toward the less negative surface. To provide the first assessment of energetic contribution to DNA bending when electrostatic asymmetry is induced by a site-specific DNA binding protein, we manipulated the electrostatics in the EcoRV endonuclease-DNA complex by mutation of cationic side chains that contact DNA phosphates and/or by replacement of a selected phosphate in each strand with uncharged methylphosphonate. Reducing the net negative charge at two symmetrically located phosphates on the concave DNA face contributes − 2.3 kcal mol 1 to − 0.9 kcal mol 1 (depending on position) to complex formation. In contrast, reducing negative charge on the opposing convex face produces a penalty of + 1.3 kcal mol 1. Förster resonance energy transfer experiments show that the extent of axial DNA bending (about 50°) is little affected in modified complexes, implying that modification affects the energetic cost but not the extent of DNA bending. Kinetic studies show that the favorable effects of induced electrostatic asymmetry on equilibrium binding derive primarily from a reduced rate of complex dissociation, suggesting stabilization of the specific complex between protein and markedly bent DNA. A smaller increase in the association rate may suggest that the DNA in the initial encounter complex is mildly bent. The data imply that protein-induced electrostatic asymmetry makes a significant contribution to DNA bending but is not itself sufficient to drive full bending in the specific EcoRV-DNA complex.  相似文献   

14.
Intact yeast cells loaded with 5- and-6-carboxyfluorescein were used to assess water transport. The results were similar to those previously reported for protoplasts assessed by using either fluorescence or light scattering, and the activation energies were 8.0 and 15.1 kcal mol−1 (33.4 and 63.2 kJ mol−1) for a strain overexpressing AQY1 aquaporin and a parental strain, respectively.  相似文献   

15.
Salt-bridges (sb) play an important role in the folding and stability of proteins. This is deduced from the evaluation of net energy in the microenvironments (ME, residues that are 4 Å away from positive and negative partners of salt-bridge and interact with them). MEs act as a determinant of net-energy due to the intrinsic features in the sequence. The stability of extremophilic proteins is due to the presence of favorable residues at the ME without any unfavorable residues. We studied a dataset of four structures from the protein data bank (PDB) and a homology model (1HM5) to gain insights on this issue. Data shows that the presence of isolated charges and polar residues in the core of extremophilic proteins helps in the formation of stable salt-bridges with reduced desolvation. Thus, site-specific mutations with favorable residues at the ME will help to develop thermo stable proteins with strong salt bridges.  相似文献   

16.
The binding free energies of four inhibitors to bovine beta-trypsin are calculated. The inhibitors use either ornithine, lysine, or arginine to bind to the S1 specificity site. The electrostatic contribution to binding free energy is calculated by solving the finite difference Poisson-Boltzmann equation, the contribution of nonpolar interactions is calculated using a free energy-surface area relationship and the loss of conformational entropy is estimated both for trypsin and ligand side chains. Binding free energy values are of a reasonable magnitude and the relative affinity of the four inhibitors for trypsin is correctly predicted. Electrostatic interactions are found to oppose binding in all cases. However, in the case of ornithine- and lysine-based inhibitors, the salt bridge formed between their charged group and the partially buried carboxylate of Asp189 is found to stabilize the complex. Our analysis reveals how the molecular architecture of the trypsin binding site results in highly specific recognition of substrates and inhibitors. Specifically, partially burying Asp189 in the inhibitor-free enzyme decreases the penalty for desolvation of this group upon complexation. Water molecules trapped in the binding interface further stabilize the buried ion pair, resulting in a favorable electrostatic contribution of the ion pair formed with ornithine and lysine side chains. Moreover, all side chains that form the trypsin specificity site are partially buried, and hence, relatively immobile in the inhibitor-free state, thus reducing the entropic cost of complexation. The implications of the results for the general problem of recognition and binding are considered. A novel finding in this regard is that like charged molecules can have electrostatic contributions to binding that are more favorable than oppositely charged molecules due to enhanced interactions with the solvent in the highly charged complex that is formed.  相似文献   

17.
To shed light on the driving force for the hydrophobic effect that partitions amphiphilic lipoproteins between water and membrane, we carried out an atomically detailed thermodynamic analysis of a triply lipid modified H-ras heptapeptide anchor (ANCH) in water and in a DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine) bilayer. Combining molecular mechanical and continuum solvent approaches with an improved technique for solute entropy calculation, we obtained an overall transfer free energy of ~−13 kcal mol−1. This value is in qualitative agreement with free energy changes derived from a potential of mean force calculation and indirect experimental observations. Changes in free energies of solvation and ANCH conformational reorganization are unfavorable, whereas ANCH-DMPC interactions—especially van der Waals—favor insertion. These results are consistent with an enthalpy-driven hydrophobic effect, in accord with earlier calorimetric data on the membrane partition of other amphiphiles. Furthermore, structural and entropic analysis of molecular dynamics-generated ensembles suggests that conformational selection may play a hitherto unappreciated role in membrane insertion of lipid-modified peptides and proteins.  相似文献   

18.
The decomposition of 2-chloroethylphosphonic acid in aqueous solution has been studied at pH values from 6 to 9 and at temperatures in the 30 to 55 C range. The rate of decomposition is estimated from the rate of formation of ethylene. The rate is proportional to the concentration of the phosphonate dianion and is independent of the hydroxyl ion concentration. The rate constant at 40 C is 1.9 × 10−4 sec−1 and the activation energy is 29.8 kcal mol−1. The rate of reaction is not affected significantly by the presence of potassium iodide or urea (substances which increase the rate of leaf abscission in trees sprayed by 2-chloroethylphosphonic acid). The rate decreases slightly in the presence of low concentrations of magnesium and calcium ions.  相似文献   

19.
Energetics of echinomycin binding to DNA   总被引:5,自引:3,他引:2       下载免费PDF全文
Differential scanning calorimetry and UV thermal denaturation have been used to determine a complete thermodynamic profile for the bis-intercalative interaction of the peptide antibiotic echinomycin with DNA. The new calorimetric data are consistent with all previously published binding data, and afford the most rigorous and direct determination of the binding enthalpy possible. For the association of echinomycin with DNA, we found ΔG° = –7.6 kcal mol–1, ΔH = +3.8 kcal mol–1 and ΔS = +38.9 cal mol–1 K–1 at 20°C. The binding reaction is clearly entropically driven, a hallmark of a process that is predominantly stabilized by hydrophobic interactions, though a deeper analysis of the free energy contributions suggests that direct molecular recognition between echinomycin and DNA, mediated by hydrogen bonding and van der Waals contacts, also plays an important role in stabilizing the complex.  相似文献   

20.
The susceptibility of monoclonal antibodies (mAbs) to undergo cold denaturation remains unexplored. In this study, the phenomenon of cold denaturation was investigated for a mAb, mAb1, through thermodynamic and spectroscopic analyses. tryptophan fluorescence and circular dichroism (CD) spectra were recorded for the guanidine hydrochloride (GuHCl)-induced unfolding of mAb1 at pH 6.3 at temperatures ranging from −5 to 50°C. A three-state unfolding model incorporating the linear extrapolation method was fit to the fluorescence data to obtain an apparent free energy of unfolding, ΔGu, at each temperature. CD studies revealed that mAb1 exhibited polyproline II helical structure at low temperatures and at high GuHCl concentrations. the Gibbs-Helmholtz expression fit to the ΔGu versus temperature data from fluorescence gave a ΔCp of 8.0 kcal mol−1 K−1, a maximum apparent stability of 23.7 kcal mol−1 at 18°C, and an apparent cold denaturation temperature (TCD) of −23°C. ΔGu values for another mAb (mAb2) with a similar framework exhibited less stability at low temperatures, suggesting a depressed protein stability curve and a higher relative TCD. Direct experimental evidence of the susceptibility of mAb1 and mAb2 to undergo cold denaturation in the absence of denaturant was confirmed at pH 2.5. thus, mAbs have a potential to undergo cold denaturation at storage temperatures near −20°C (pH 6.3), and this potential needs to be evaluated independently for individual mAbs.Key words: monoclonal antibodies, thermodynamic stability, cold denaturation, free energy, fluorescence  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号