首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The normality of nuclear and cytoplasmic maturation of rabbit oocytes, matured in vivo and in vitro, has been assessed by cytogenetic and electrophoretic criteria. The findings indicate not only that nuclear maturation in vivo and in vitro are directly comparable, but also, as observed by high-resolution, two-dimensional polyacrylamide gel electrophoresis, (1) that both qualitative and quantitative changes in the pattern of polypeptide synthesis occur during maturation, (2) that these patterns are directly comparable in oocytes that had been matured either in vivo or in vitro, and (3) that each stage of maturation is associated with the appearance of specific polypeptides in the autoradiographic patterns. The major differences observed between oocytes matured under these two conditions are (1) that several polypeptides fail to appear in in vitro matured oocytes at the time they are detected in vivo and (2) that the synthesis of some polypeptides is prolonged in vitro compared to in vivo matured oocytes.  相似文献   

2.
Synchronization of oocyte maturation in vitro has been shown to produce higher in vitro fertilization (IVF) rates than those observed in oocytes matured in vitro without synchronization. However, the increased IVF rates never exceeded those observed in oocytes matured in vivo without synchronization. This study was therefore designed to define the effect of in vivo synchronization of oocyte maturation on IVF rates. Mice were superovulated and orally treated with 7.5 mg cilostazol (CLZ), a phosphodiesterase 3A (PDE3A) inhibitor, to induce ovulation of immature oocytes at different stages depending on frequency and time of administration of CLZ. Mice treated with CLZ ovulated germinal vesicle (GV) or metaphase I (MI) oocytes that underwent maturation in vitro or in vivo (i.e. in the oviduct) followed by IVF. Superovulated control mice ovulated mature oocytes that underwent IVF directly upon collection. Ovulated MI oocytes matured in vitro or in vivo had similar maturation rates but significantly higher IVF rates, 2–4 cell embryos, than those observed in control oocytes. Ovulated GV oocytes matured in vitro showed similar maturation rates but significantly higher IVF rates than those observed in control oocytes. However, ovulated GV oocytes matured in vivo had significantly lower IVF rates than those noted in control oocytes. It is concluded that CLZ is able to synchronize oocyte maturation and improve IVF rates in superovulated mice. CLZ may be capable of showing similar effects in humans, especially since temporal arrest of human oocyte maturation with other PDE3A inhibitors in vitro was found to improve oocyte competence level. The capability of a clinically approved PDE3A inhibitor to improve oocyte fertilization rates in mice at doses extrapolated from human therapeutic doses suggests the potential scenario of the inclusion of CLZ in superovulation programs. This may improve IVF outcomes in infertile patients.  相似文献   

3.
Autoradiographic patterns of [1-35S]methionine-labeled polypeptides separated by two-dimensional polyacrylamide gel electrophoresis were obtained from (1) rabbit oocytes that had undergone meiotic maturation to metaphase II in vivo or in vitro, (2) in vitro matured oocytes cultured for an additional 36 hr, or recovered from the reproductive tract at 36 hr after ovulation, (3) newly fertilized eggs, and (4) embryos developed in vivo or in vitro from the 1-cell stage to the 12- to 16-cell stage. The findings indicate that the detectable synthesis of a set of stage-specific (cleavage) polypeptides is autonomous of fertilization and appears to follow a timed, translational schedule initiated with the breakdown of the oocyte nucleus during the resumption of arrested meiosis.  相似文献   

4.
The objective was to evaluate mitochondrial distribution, and its relationship to meiotic development, in canine oocytes during in vitro maturation (IVM) at 48, 72, and 96 h, compared to those that were non-matured or in vivo matured (ovulated). The distribution of active mitochondria during canine oocyte maturation (both in vitro and in vivo) was assessed with fluorescence and confocal microscopy using MitoTracker Red (MT-Red), whereas chromatin configuration was concurrently evaluated with fluorescence microscopy and DAPI staining. During IVM, oocytes exhibited changes in mitochondrial organization, ranging from a fine uniform distribution (pattern A), to increasing clustering spread throughout the cytoplasm (pattern B), and to a more perinuclear and cortical distribution (pattern C). Pattern A was mainly observed in germinal vesicle (GV) oocytes (96.4%), primarily in the non-matured group (P < 0.05). Pattern B was seen in all ovulated oocytes which were fully in second metaphase (MII), whereas in IVM oocytes, ∼64% were pattern B, irrespective of duration of culture or stage of nuclear development (P > 0.05). Pattern C was detected in a minor percentage (P < 0.05) of oocytes (mainly those in first metaphase, MI) cultured for 72 or 96 h. In vitro matured oocytes had a minor percentage of pattern B (P < 0.05) and smaller mitochondrial clusters in IVM oocytes than ovulated oocytes, reaching only 4, 11, and 17% of MII at 48, 72, and 96 h, respectively. Thus, although IVM canine oocytes rearranged mitochondria, which could be related to nuclear maturation, they did not consistently proceed to MII, perhaps due to incomplete IVM, confirming that oocytes matured in vitro were less likely to be competent than those matured in vivo.  相似文献   

5.
Abdoon AS  Kandil OM  Zeng SM  Cui M 《Theriogenology》2011,76(7):1207-1214
Dromedary camel oocytes have the ability to spontaneous parthenogenetic activation and development in vivo and in vitro. The present study was conducted to investigate changes in mitochondrial distribution, adenosine triphosphate (ATP), and glutathione (GSH) contents and [Ca2+] oscillation during in vitro maturation and spontaneous parthenogentic activation of dromedary camel oocytes. Dromedary camel cumulus-oocyte complexes (COCs) were matured in TCM199 medium supplemented with 10% FCS + 10 μg/mL FSH + 10 IU hCG + 10 IU eCG + 10 ng/mL EGF and 50 μg/mL gentamycine. Maturation was performed at 38.5 °C under 5% CO2 in humidified air for 40 h. After maturation and removal of cumulus cells, oocytes were classified into: immature cultured (Group 1); metaphase II (M II, Group 2); and spontaneously parthenogenetically activated (with 2 polar bodies, Group 3); cleaved embryos (Group 4); and immature oocytes served as a control (Group 5). Cytoplasmic mitochondrial distribution, ATP-GSH contents, calcium [Ca2+] oscillation were determined. Results indicated that M II and spontaneously parthenogenetically activated oocytes represent 37.53% and 32.67% of the cultured oocytes, respectively, and 3.3% cleaved and developed to 2-16-cell stage embryos. Mitochondrial distribution, ATP-GSH contents and [Ca2+] oscillation were significantly (P < 0.01) differ between immature and matured dromedary camel oocytes. Mitochondrial distribution showed clustering form in matured oocytes without polar body. High polarized mitochondrial distribution (HPM) was detected in M II and spontaneously parthenogenetically activated oocytes, and the intensity of MitoTracker Red was higher in spontaneously parthenogenetically activated than M II. ATP-GSH contents and the duration of [Ca2+] oscillation were significantly (P < 0.01) higher in spontaneously parthenogenetically activated than M II oocytes or that matured without polar body. In conclusion, the higher incidence of spontaneously parthenogenetically activated in vitro matured dromedary camel oocytes could be attributed to the high polarized mitochondrial distribution associated with significantly higher ATP-GSH contents and duration of [Ca2+] oscillation.  相似文献   

6.
The developmental capacity of in vitro matured rabbit oocytes was assessed after transfer to inseminated, ovariectomized recipients such that fertilization and preimplantation development occurred in vivo. The results demonstrate that of the total number of transferred oocytes (1) 75% were fertilized, (2) 50% underwent cleavage, and (3) 13% developed into expanded blastocysts. By light microscopic criteria, embryos recovered at representative stages of preimplantation development were morphologically indistinguishable from embryos recovered at comparable stages from normally mated animals. Autoradiographs produced by high resolution, two-dimensional polyacrylamide gel electrophoresis demonstrated that changes in the pattern of polypeptide synthesis during the preimplantation stages were directly and entirely comparable for embryos derived either from normally mated animals or from in vivo or in vitro matured and transferred oocytes. Up to approximately the eight-cell stage, the translational patterns indicate the progressive disappearance of numerous oocyte-characteristic polypeptides from the autoradiographs as well as the appearance of some new species of polypeptides. Between the eight-cell and early blastocyst period, extensive and complex changes (qualitative and quantitative) occur in the patterns, whereas, in contrast, the phase of blastocyst growth and expansion that occurs during the latter portion of the preimplantation period is characterized by a fairly uniform and constant translational pattern.  相似文献   

7.
The expression pattern of glucose metabolism genes (hexokinase, phosphofructokinase, glucose-6-phosphate dehydrogenase [G6PDH], lactate dehydrogenase [LDH], and pyruvate dehydrogenase [PDH]) were studied in buffalo in vitro–matured oocytes and in vitro–produced embryos cultured under different glucose concentrations (0 mM, 1.5 mM, 5.6 mM, and 10 mM) during in vitro maturation of oocytes and culture of IVF produced embryos. The expression of the genes varied significantly over the cleavage stages under different glucose concentrations. Developmental rate of embryos was highest under a constant glucose level (5.6 mM) throughout during maturation of oocytes and embryo culture. Expression pattern of glucose metabolism genes under optimum glucose level (5.6 mM) indicated that glycolysis is the major pathway of glucose metabolism during oocyte maturation and early embryonic stages (pre-maternal to zygotic transition [MZT]) and shifts to oxidative phosphorylation during post-MZT stages in buffalo embryos. Higher glucose level (10 mM) caused abrupt changes in gene expression and resulted in shifting toward anaerobic metabolism of glucose during post-MZT stages. This resulted in decreased development rate of embryos during post-MZT stages. High expression of LDH and PDH in the control groups (0 mM glucose) indicated that in absence of glucose, embryos try to use available pyruvate and lactate sources, but succumb to handle the post-MZT energy requirement, resulting to poor development rate. Expression pattern of G6PDH during oocyte maturation as well early embryonic development was found predictive of quality and development competence of oocytes/ embryos.  相似文献   

8.
In Experiment 1, studies were conducted to apply the transvaginal ultrasound guided ovum pick-up (OPU) technique in dromedary camels after their ovarian super-stimulation and in vivo oocyte maturation. In Experiment 2, the developmental potential of two commonly used oocyte types, i.e., in vivo matured oocytes collected by OPU and abattoir derived in vitro-matured oocytes was compared after their chemical activation. In Experiment 3, developmental competence of oocytes collected from super-stimulated camels by OPU, matured either in vivo or in vitro, was compared after their chemical activation. Mature female dromedary camels super-stimulated with a combination of eCG and pFSH were given an injection of 20 μg of the GnRH analogue, buserelin 24, 26, or 28 h before the scheduled OPU. For collection of cumulus oocyte complexes (COCs) the transducer was guided through the vulva into the cranial most portion of the vagina and 17-gauge, 55 cm single-lumen needle was placed in the needle guide of the ultrasound probe and advanced through the vaginal fornix and into the follicle. Follicular fluid was aspirated using a regulated vacuum pump into tubes containing embryo-flushing media. Aspirates were searched for COCs using a stereomicroscope, and they were then denuded of cumulus cells by hyaluronidase and repeated pipetting. The oocytes were classified as mature (with a visible polar body), immature (with no visible polar body), activated (with divided or fragmented ooplasm) and others (degenerated and abnormal).Overall an average of 12.12 ± 7.9 COCs were aspirated per animal with an oocyte recovery rate from the aspirated follicles of about 77%. The majority (> 90%) of the collected COCs by OPU were with loose and expanded cumulus cells. The proportion of matured oocytes obtained at 28-29 h (91.2 ± 4.1) and 26-27 h (82.1 ± 3.4) were higher (P < 0.005) when compared with those obtained at 24-25 h (40.4 ± 16.3) after GnRH administration. In Experiment 2, a higher proportion (P < 0.05) of in vivo matured oocytes cleaved (84.6 ± 2.1 vs. 60.9 ± 6.6) and developed to blastocyst stages (52.4 ± 4.1 vs. 30.5 ± 3.3) when compared with in vitro matured oocytes collected from slaughterhouse ovaries. In Experiment 3, no difference was observed between the developmental competences of oocytes, collected from super stimulated camels, matured in vitro with those collected after their in vivo maturation.In conclusion, about 80-90% mature oocytes can be collected by ultrasound guided transvaginal ovum pick-up from super-stimulated dromedary camels 26-28 h after GnRH administration. The developmental response, to chemical activation, of in vivo matured oocytes collected by ultrasound guided transvaginal OPU is better than in vitro matured oocytes obtained from slaughterhouse ovaries. However, no difference was observed in the developmental competence of oocytes collected by OPU whether they were matured in vivo or in vitro.  相似文献   

9.
10.
Nuclear reprogramming of somatic cells can be induced by oocyte factors. Despite numerous attempts, the factors responsible for successful nuclear reprogramming remain elusive. In the present study, we found that porcine oocytes with the first polar body collected at 42 h of in vitro maturation had a stronger ability to support early development of cloned embryos than porcine oocytes with the first polar body collected at 33 h of in vitro maturation. To explore the key reprogramming factors responsible for the difference, we compared proteome signatures of the two groups of oocytes. 18 differentially expressed proteins between these two groups of oocytes were discovered by mass spectrometry (MS). Among these proteins, we especially focused on vimentin (VIM). A certain amount of VIM protein was stored in oocytes and accumulated during oocyte maturation, and maternal VIM was specifically incorporated into transferred somatic nuclei during nuclear reprogramming. When maternal VIM function was inhibited by anti-VIM antibody, the rate of cloned embryos developing to blastocysts was significantly lower than that of IgG antibody-injected embryos and non-injected embryos (12.24 versus 22.57 and 21.10%; p < 0.05), but the development of in vitro fertilization and parthenogenetic activation embryos was not affected. Furthermore, we found that DNA double strand breaks dramatically increased and that the p53 pathway was activated in cloned embryos when VIM function was inhibited. This study demonstrates that maternal VIM, as a genomic protector, is crucial for nuclear reprogramming in porcine cloned embryos.  相似文献   

11.
Lu F  Jiang J  Li N  Zhang S  Sun H  Luo C  Wei Y  Shi D 《Theriogenology》2011,76(5):967-974
The objective was to investigate the effect of recipient oocyte age and the interval from activation to fusion on developmental competence of buffalo nuclear transfer (NT) embryos. Buffalo oocytes matured in vitro for 22 h were enucleated by micromanipulation under the spindle view system, and a fetal fibroblast (pretreated with 0.1 μg/mL aphidicolin for 24 h, followed by culture for 48 h in 0.5% fetal bovine serum) was introduced into the enucleated oocyte, followed by electrofusion. Both oocytes and NT embryos were activated by exposure to 5 μM ionomycin for 5 min, followed by culture in 2 mM 6-dimethyl-aminopurine for 3 h. When oocytes matured in vitro for 28, 29, 30, 31, or 32 h were activated, more oocytes matured in vitro for 30 h developed into blastocysts in comparison with oocytes matured in vitro for 32 h (31.3 vs 19.9%, P < 0.05). When electrofusion was induced 27 h after the onset of oocyte maturation, the cleavage rate (78.0%) was higher than that of electrofusion induced at 28 h (67.2%, P < 0.05), and the blastocyst yield (18.1%) was higher (P < 0.05) than that of electrofusion induced at 25 or 26 h (7.4 and 8.5%, respectively). A higher proportion of NT embryos activated at 3 h after electrofusion developed to the blastocyst stage (18.6%) in comparison with NT embryos activated at 1 h (6.0%), 2 h (8.3%), or 4 h (10.6%) after fusion (P < 0.05). No recipient was pregnant 60 d after transfer of blastocysts developed from NT embryos activated at 1 h (0/8), 2 h (0/10), or 4 h (0/9) after fusion. However, 3 of 16 recipients were pregnant following transfer of blastocysts developed from the NT embryos activated at 3 h after fusion, and two of these recipients maintained pregnancy to term. We concluded that the developmental potential of buffalo NT embryos was related to recipient oocyte age and the interval from fusion to activation.  相似文献   

12.
13.
《Small Ruminant Research》2010,90(2-3):144-148
Assisted reproductive technologies (ART) such as artificial insemination (AI) and multiple ovulation and embryo transfer (MOET) have been used to increase reproductive efficiency and accelerate genetic gain. The principal limitations of MOET are due to variable female response to hormonal treatment, fertilization failures and premature regression of Corpora luteum. The in vitro production (IVP) of embryos offers the possibility of overcoming MOET limitations. The method of IVP of embryos involves three main steps: in vitro maturation of oocytes (IVM), in vitro fertilization of oocytes (IVF) with capacitated sperm and in vitro culture (IVC) of embryos up to blastocyst stage. Recovering oocytes from live selected females by laparoscopic ovum pick-up (LOPU) and breeding prepubertal females by juvenile in vitro embryo technology (JIVET) will allow a greater production of valuable goats. Also, IVP of goat embryos will provide an excellent source of embryos for basic research on development biology and for commercial applications of transgenic and cloning technologies. Different protocols of IVP of embryos have been used in goats. However oocyte quality is the main factor for embryos reaching blastocyst stage from IVM/IVF/IVC oocytes. One of the principal determinant factors in the results of blastocyst development is the age of the oocyte donor females. In goats, oocytes from prepubertal and adult females do not show differences in in vitro maturation and in vitro fertilization; however the percentage of oocytes reaching blastocyst stage ranges from 12 to 36% with oocytes from prepubertal and adult goats, respectively.  相似文献   

14.
Mammalian WNT genes encode secreted glycoproteins that are conserved homologues of the Drosophila Wingless gene, which plays a crucial role in Drosophila development. Recently, WNT pathway signaling has been implicated in ovarian development, oogenesis, and early development. We sought to evaluate whether these genes may contribute to the formation of healthy human oocytes or embryos, and whether the expression of these genes could provide informative markers of human oocyte and embryo quality. To do this, we employed the primate embryo gene expression resource (PREGER; www.preger.org) to examine expression of mRNAs encoding 38 components of the WNT signaling pathway in rhesus monkey oocytes and embryos as a nonhuman primate model. We observed considerable conservation between rhesus monkey and mouse of expression of WNT, FZD, and effector gene mRNAs, and a generalized downregulation of genes encoding key components of the WNT signaling pathway during preimplantation development. Our results support a role for WNT signaling during oocyte growth or maturation, but not during preimplantation development. Additionally, we observed differences between in vitro cultured and in vivo developing blastocysts, indicating possible effects of culture on WNT signaling during the peri-implantation period.  相似文献   

15.
R Romar  P Coy  D Rath 《Theriogenology》2012,78(5):1126-1139
The cortical reaction induces changes at the egg's Zona pellucida (ZP), perivitelline space and/or oolemma level, blocking polyspermic fertilization. We studied the timing of sperm penetration and cortical reaction in pig oocytes matured under different conditions and inseminated with different boars. Immature (germinal vesicle stage) and in vitro matured (IVM) (metaphase II stage) oocytes were inseminated and results assessed at different hours post insemination. Penetrability and polyspermy rates increased with gamete coincubation time and were higher in IVM oocytes. A strong boar effect was observed in IVF results. Cortical reaction (assessed as area occupied by cortical granules) and galactose-β(1-3)-Nacetylgalactosamine residues on ZP (area labeled by peanut agglutinin lectin, PNA) were assessed in IVM and in vivo matured (IVV) oocytes at different hours post insemination. After maturation, IVM and IVV oocytes displayed similar area occupied by cortical granules and it decreased in fertilized oocytes compared to unfertilized ones. Cortical reaction was influenced by boar and was faster in polyspermic than in monospermic oocytes, and in IVM than in IVV oocytes. The outer ZP of inseminated oocytes appeared stained by PNA and the labeled area increased along with gamete coculture time. This labeling was also observed after insemination of isolated ZP, indicating that this modification in ZP carbohydrates is not induced by cortical reaction. The steady and maintained cortical reaction observed at 4 to 5 h post insemination in IVV monospermic oocytes might reflect the physiological time course of this important event in pigs. Both maturation conditions and boar affect cortical granules release.  相似文献   

16.
17.
Despite recent efforts to improve in vitro maturation (IVM) systems for porcine oocytes, developmental competence of in vitro-matured oocytes is still suboptimal compared with those matured in vivo. In this study, we compared oocytes obtained from large (≥8 mm; LF) and medium (3–7 mm; MF) sized follicles in terms of nuclear maturation, intracellular glutathione and reactive oxygen species levels, gene expression, and embryo developmental competence after IVM. In the control group, cumulus-oocyte complexes (COCs) were aspirated from MF and matured for 22 hours with hormones and subsequently matured for 18 to 20 hours without hormones at 39 °C, 5% CO2in vitro. In the LF group, COCs were obtained from follicles larger than 8 mm and were subjected to IVM for only 18 hours. The ovaries have LF were averagely obtained with 1.7% per day during 2012 and it was significantly higher in the winter season. The results of the nuclear stage assessment of the COCs from the LFs are as follows: before IVM (0 hours); germinal vesicle stage (15.2%), metaphase I (MI) stage (55.4%), anaphase and telophase I stages (15.8%), and metaphase II (MII) stage (13.6%). After 6 hours IVM; germinal vesicle (4.2%), MI (43.6%), anaphase and telophase I (9.4%), and MII (42.8%). After 18-hour IVM; MI (9.7%) and MII (90.3%). Oocytes from LF showed a significant (P < 0.001) increase in intracellular glutathione (1.41 vs. 1.00) and decrease in reactive oxygen species (0.8 vs. 1.0) levels compared with the control. The cumulus cells derived from LFs showed lower (P < 0.1) mRNA expression of COX-2 and TNFAIP6, and higher (P < 0.1) mRNA expression of PCNA and Nrf2 compared with the control group-derived cumulus cells. After parthenogenetic activation, in vitro fertilization and somatic cell nuclear transfer (SCNT) using matured oocytes from LFs, the embryo development was significantly improved (greater blastocyst formation rates and total cell numbers in blastocysts) compared with the control group. In conclusion, oocytes from LFs require only 18 hours to complete oocyte maturation in vitro and their developmental competence is significantly greater than those obtained from MFs. Although their numbers are limited, oocytes from LFs might offer an alternative source for the efficient production of transgenic pigs using SCNT.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号