首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Novel predator–prey interactions can contribute to the invasion success of non‐native predators. For example, native prey can fail to recognize and avoid non‐native predators due to a lack of co‐evolutionary history and cue dissimilarity with native predators. This might result in a competitive advantage for non‐native predators. Numerous lady beetle species were globally redistributed as biological control agents against aphids, resulting in novel predator–prey interactions. Here, we investigated the strength of avoidance behavior of the pea aphid (Acyrthosiphon pisum) toward chemical cues of native lady beetles and non‐native Asian Harmonia axyridis and European Coccinella septempunctata and Hippodamia variegata in North America, hypothesizing that cues of non‐native lady beetles induce weaker avoidance behavior than cues of co‐evolved native lady beetles. Additionally, we compared aphid consumption of lady beetles, examining potential predation advantages of non‐native lady beetles. Finally, we compared cue avoidance behavior between North American and European pea aphid populations and aphid consumption of native and non‐native lady beetles in North America and Europe. In North America, pea aphids avoided chemical cues of all ladybeetle species tested, regardless of their origin. In contrast to pea aphids in North America, European pea aphids did not avoid cues of the non‐native H. axyridis. The non‐native H. axyridis and C. septempunctata were among the largest and most voracious lady beetle species tested, on both continents. Consequently, in North America non‐native lady beetle species might have a competitive advantage on shared food resources due to their relatively large body size, compared to several native American lady beetle species. In Europe, however, non‐native H. axyridis might benefit from missing aphid cue avoidance as well as a large body size. The co‐evolutionary time gap between the European and North American invasion of H. axyridis likely explains the intercontinental differences in cue avoidance behavior and might indicate evolution in aphids toward non‐native predators.  相似文献   

2.
Introduced species have been linked to declines of native species through mechanisms including intraguild predation and exploitative competition. However, coexistence among species may be promoted by niche partitioning if native species can use resources that the invasive species cannot. Previous research has shown that some strains of the aphid Aphis craccivora are toxic to a competitively dominant invasive lady beetle, Harmonia axyridis. Our objective was to investigate whether these aphids might be an exploitable resource for other, subdominant, lady beetle species. We compared larval development rate, survival, and adult weight of five lady beetle species in no‐choice experiments with two different strains of A. craccivora, one of which is toxic to H. axyridis and one that is nontoxic. Two lady beetle species, Cycloneda munda and Coleomegilla maculata, were able to complete larval development when feeding on the aphid strain that is toxic to H. axyridis, experiencing only slight developmental delays relative to beetles feeding on the other aphid strain. One species, Coccinella septempunctata, also was able to complete larval development, but experienced a slight reduction in adult weight. The other two lady beetle species, Hippodamia convergens and Anatis labiculata, demonstrated generally low survivorship when consuming A. craccivora, regardless of aphid strain. All five species showed increased survival and/or development relative to H. axyridis on the “toxic” aphid strain. Our results suggest that this toxic trait may act as a narrow‐spectrum defense for the aphids, providing protection against only some lady beetle enemies. For other less‐susceptible lady beetles, these aphids have the potential to provide competitive release from the otherwise dominant H. axyridis.  相似文献   

3.
A 2‐year study was conducted to characterize the intercrop movement of convergent lady beetle, Hippodamia convergens Guerin‐Meneville (Coleoptera: Coccinellidae) between adjacent cotton and alfalfa. A dual protein‐marking method was used to assess the intercrop movement of the lady beetles in each crop. In turns field collected lady beetles in each crop were assayed by protein specific ELISA to quantify the movement of beetles between the crops. Results indicated that a high percentage of convergent lady beetles caught in cotton (46% in 2008; 56% in 2009) and alfalfa (46% in 2008; 71% in 2009) contained a protein mark, thus indicating that convergent lady beetle movement was largely bidirectional between the adjacent crops. Although at a much lower proportion, lady beetles also showed unidirectional movement from cotton to alfalfa (5% in 2008 and 6% in 2009) and from alfalfa to cotton (9% in 2008 and 14% in 2009). The season‐long bidirectional movement exhibited by the beetles was significantly higher in alfalfa than cotton during both years of the study. The total influx of lady beetles (bidirectional and unidirectional combined) was significantly higher in alfalfa compared with that in cotton for both years. While convergent lady beetles moved between adjacent cotton and alfalfa, they were more attracted to alfalfa when cotton was not flowering and/or when alfalfa offered more opportunities for prey. This study offers much needed information on intercrop movement of the convergent lady beetle that should facilitate integrated pest management decisions in cotton utilizing conservation biological control.  相似文献   

4.
Predatory lady beetles (Coccinellidae) form one of the prevalent and effective groups of entomophages in the forest-steppe zone of West Siberia. Among 17 species of predatory lady beetles recorded in cereal agrocenoses and on bird cherry trees, Propylea quatuordecimpunctata, Coccinella septempunctata, Hippodamia tredecimpunctata, H. variegata, and H. arctica are predominant. This paper presents data on the species composition and ecological features of lady beetles in agrocenoses of winter rye, spring wheat, and oats as well as on the impact of agrotechnical methods (the main treatment of soil, application of chemicals, and forecrops) and cultivation technology on the abundance of lady beetles.  相似文献   

5.
Coincidental intraguild predation is expected to be less disruptive to biological control than omnivorous intraguild predation, and strong intraguild predation is not expected to occur in natural systems. Coincidental intraguild predation in a foodweb involving introduced pest and natural enemy species was examined to determine whether intraguild predation would be disruptive of biological control services in soybean agroecosystems. Introduced natural enemies are important regulators of soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), populations in North America. Seven-spotted lady beetles, Coccinella septempunctata L., and multicolored Asian lady beetles, Harmonia axyridis Pallas (Coleoptera: Coccinellidae), are key predators of soybean aphid in North America while the chalcidoid wasp, Aphelinus certus Yasnosh (Hymenoptera: Aphelinidae), is the most common parasitoid of soybean aphid in Ontario, Canada. Predation of parasitized soybean aphids at two stages (newly parasitized aphids and mummified aphids) by adults and third instar larvae of both C. septempunctata and H. axyridis was examined in laboratory experiments. In choice experiments, all stages of lady beetles preferred non-parasitized aphids over mummified aphids. In cage experiments, third instar larvae and male and female adults of both lady beetles did not discriminate between newly parasitized and non-parasitized aphids. The influence of coincidental intraguild predation on the efficacy of parasitoids as biological control agents, and implications for soybean aphid management decisions based on natural enemies, are discussed.  相似文献   

6.
Evaluating the cumulative effects of the human footprint on landscape connectivity is crucial for implementing policies for the appropriate management and conservation of landscapes. We present an adjusted multidimensional spatial human footprint index (SHFI) to analyze the effects of landscape transformation on the remnant habitat connectivity for 40 terrestrial mammal species representative of the Trans-Mexican Volcanic System in Michoacán (TMVSMich), in western central Mexico. We adjusted the SHFI by adding fragmentation and habitat loss to its original three components: land use intensity, time of human landscape intervention, and biophysical vulnerability. The adjusted SHFI was applied to four scenarios: one grouping all species and three grouping several species by habitat spatial requirements. Using the SHFI as a dispersal resistance surface and applying a circuit theory based approach, we analyzed the effects of cumulative human impact on habitat connectivity in the different scenarios. For evaluating the relationship between habitat loss and connectivity, we applied graph theory-based equivalent connected area (ECA) index. Results show over 60% of the TMVSMich has high SHFI values, considerably lowering current flow for all species. Nevertheless, the effect on connectivity of human impact is higher for species with limited dispersal capacity (100–500 m). Our approach provides a new form of evaluating human impact on habitat connectivity that can be applied to different scales and landscapes. Furthermore, the approach is useful for guiding discussions and implementing future biodiversity conservation initiatives that promote landscape connectivity as an adaptive strategy for climate change.  相似文献   

7.
Through four spatially explicit models, we investigate how habitat fragmentation affects cyclic predator–prey population dynamics. We use a Partial Differential Equation (PDE) framework to describe the dispersal of predators and prey in a heterogeneous landscape made of high quality and low quality habitat patches, subject to increasing fragmentation through habitat separation and/or habitat loss. Our results show that habitat fragmentation decreases the amplitude of the predator–prey population cycles while average population density is not as strongly affected in general. Beyond these simple trends however, the four models show differing responses to fragmentation, indicating that when making predictions about population survival and persistence in the face of habitat fragmentation, the choice of model is important. Our results may inform conservation efforts in fragmented habitats for cyclic species such as the snowshoe hare and Canada lynx. Electronic Supplementary Material  The online version of this article () contains supplementary material, which is available to authorised users.  相似文献   

8.
Species confined to temporally stable habitats are usually susceptible to habitat fragmentation, as living in long-lasting habitats is predicted to constrain evolution of dispersal ability. In Europe, saproxylic invertebrates associated with tree hollows are currently threatened due to the severe fragmentation of their habitat, but data on the population genetic consequences of such habitat decline are still scarce. By employing AFLP markers, we compared the spatial genetic structure of two ecologically and taxonomically related beetle species, Osmoderma barnabita and Protaetia marmorata (Cetoniidae). Both species are exclusively associated with tree hollows, but O. barnabita has a more restricted host preferences compared to P. marmorata. Analyses of spatial autocorrelation showed, in line with the predicted low dispersal potential of these saproxylic beetles, that both species are characterized by a strong kinship structure, which was more pronounced in the specialist O. barnabita than in the generalist P. marmorata. Individuals of both species sampled within single trees showed high relatedness (≈0.50 in O. barnabita and ≈0.15 in P. marmorata). Interestingly, groups of pheromone-emitting O. barnabita males sampled on the same tree trunk were found to be full brothers. Whether this result can be explained by kin selection to increase attraction of conspecific females for mating or by severe inbreeding of beetles within individual tree hollows needs further study. Although our studied populations were significantly inbred, our results suggest that the dispersal ability of Osmoderma beetles may be one order of magnitude greater than suggested by previous dispersal studies and acceptable levels of habitat fragmentation for metapopulation survival may be bigger than previously thought.  相似文献   

9.
The predatory multicolored Asian lady beetle, Harmonia axyridis, was attracted to volatiles released from Chinese cabbage infested by the green peach aphid, Myzus persicae, in T-tube olfactometer choice tests. However, lady beetle adults and larvae did not respond to clean air, Chinese cabbage alone or green peach aphid alone. Of different prey densities, H. axyridis adults were most attracted to Chinese cabbage infested by 60 M. persicae adults after 24 h. However, H. axyridis larvae were not attracted to Chinese cabbage infested by M. persicae. Mechanically damaged Chinese cabbage attracted neither lady beetle adults nor larvae. Predatory adults were attracted to 60 M. persicae adults after 24 and 48 h, and to 90 M. persicae adults after 12 h, suggesting that the predatory response depends on the prey density. Lady adult beetles did not prefer the volatiles induced by Diamondback moth, Plutella xylostella, indicating that specific host insect specificity attracts respective natural enemies. It can be explained that the volatile compounds emitted from the host plant as a result of herbivore attack preferred by the specific insect species.  相似文献   

10.
We examined the effects of habitat fragmentation on the species distributions, guild membership, and community structure of old-field insects using a fine-scale experimental approach. A continuous 1-ha goldenrod field was fragmented into four treatments that varied in both patch size and degree of isolation. Each treatment was replicated four times and arranged in a Latin square design. Canopy insects in fragmented patches were sampled with sweep nets during early and late summer 1995. The species richness of insects was significantly lower in fragmented than in unfragmented treatments during July, but was similar among treatments in September. Overall community abundance showed no treatment effect during either month. We also found significant row and column effects, suggesting there was spatial heterogeneity in species richness and abundance apart from treatment effects. Differences in species richness during July were primarily due to the loss of rare species in highly fragmented plots. Overall abundance was less responsive to community change because deletions of rare species in fragmented areas were not detected in abundance analyses. Four feeding guilds showed different responses to fragmentation: the species richness of sucking herbivores and the abundance of parasitoids were significantly reduced by fragmentation but predators and chewing herbivores were largely unaffected. Analyses of a subset of individual species within guilds suggest that the greater effects of fragmentation on sucking herbivores and parasitoids may be due to the degree of habitat specificity of guild members. The effects of small-scale habitat fragmentation were therefore detectable at the level of community, guild, and individual species. Changes in species richness, guild structure and species distributions were likely due to differential effects of habitat alteration on individual movements and patch selection rather than dispersal or demographic change. Nonetheless, the selective loss of rare species, differential guild effects and changes in species occupancy that we found in this small-scale experiment are also factors that are likely to operate in fragmented habitats over broader spatial scales. Received: 11 May 1998 / Accepted: 27 September 1998  相似文献   

11.
To clarify functional and numerical responses to temporal and spatial variations of resources (resource tracking), and the population characteristics of the ladybird beetle Harmonia axyridis, I analyzed the results of a 3-year field observation at 24 sites (seven plant species) on eight species of aphids. The seasonal changes in the number of beetles estimated by the Jolly–Seber method were significantly correlated with those of aphids in the total area. The estimated values of population parameters suggested frequent immigration and emigration of the H. axyridis population, although reproductive rates between spring and summer were rather stable all 3 years (1.87–3.49). The staying time and the daily number of adults and eggs at each site were influenced not only by a single factor but also by interactions among time and quantity and quality of the prey. The adult movement showed two patterns, which corresponded with the movement within and between the subpopulations when an assemblage of H. axyridis occurring on the plants of the same species or genus was regarded as a subpopulation. Adult movement intensely occurred within a subpopulation, although the beetles moving between subpopulations had a significantly greater chance to reach the habitat with a high aphid density. The habitats of H. axyridis could be categorized into a suitable habitat for survival and reproduction and a temporal refuge. The results obtained here suggest that H. axyridis, with high ability of prey searching and reproduction, maintains a stable population in heterogeneous and temporal habitats by its resource tracking mechanisms. Received: March 8, 1999 / Accepted: April 25, 2000  相似文献   

12.
Populations of cotton aphid on Hibiscus syriacus increased rapidly from 17 to 24 May 2007, and then decreased as its predator, the lady beetle Hamonia axyridis, increased in number. There was a 10 day time lag between peak populations of aphids and lady beetles. The infestation of aphids on H. syriacus produced some damage, but H. syriacus recovered soon after the lady beetles arrived. Cotton aphid clones from H. syriacus were transferred to other summer host plants: to five different vegetables on two dates, and to cucumber on three dates. Apart from one case where reproduction occurred on eggplant, most H. syriacus aphid clones did not survive on the vegetables. The cotton aphid on H. syriancus was prey and a food source for H. axyridis and acted to conserve natural enemies.  相似文献   

13.
Haynes KJ  Diekötter T  Crist TO 《Oecologia》2007,153(3):511-520
Few studies have disentangled the effects of the area and fragmentation of a focal habitat type on species that use multiple habitat types within a landscape. We experimentally investigated the effects of habitat area, habitat fragmentation, and matrix composition on the movement and distribution of Melanoplus femurrubrum. Adults of this grasshopper feed preferentially on grasses, but oviposit almost exclusively in soil dominated by forbs. We compared population densities among plots that were made to vary in the area and fragmentation of clover habitat and composition of the matrix (grass or bare ground) within which clover habitat was embedded. In addition, a mark-recapture survey was conducted to examine effects of habitat area, fragmentation, and matrix composition on loss of individuals from a plot’s clover habitat and movement between clover subplots within plots. Overall densities of adult M. femurrubrum (averaged over clover and matrix) were 2.2× higher in plots where the matrix was composed of grass as compared to bare ground, and 1.8× higher in plots with 64 compared to 16 m2 of clover habitat. Overall densities of nymphs were also positively influenced by greater clover area, but were unaffected by matrix composition. Within focal clover habitat embedded in grass matrix, adult densities were 2.1× higher in small clover subplots than large clover subplots. We conclude that the grass matrix had a positive effect on adult densities, but not nymph densities, because grass and forb-dominated habitats likely provide complementary resources only for adults. The aggregation of adults on small clover subplots within grass matrix was mainly attributed to a greater rate of emigration loss per unit area. In addition, this study emphasizes that a species’ response to changes in the area of a focal habitat type can depend significantly on the availability of complementary resources in the surrounding landscape. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
Species belonging to higher trophic levels are particularly vulnerable to habitat loss and consequential host population declines, but detection of effects depends on observation scale. We investigated the effects of habitat and host availability at multiple scales on parasitoids of early successional saproxylic beetles in middle boreal Sweden, where forestry has led to habitat fragmentation and coarse woody debris (CWD) loss. Parasitoid wasps and beetle hosts were collected from nine locations, each containing three spruce-dominated stand types (clear-cut, mature managed and unmanaged stands), using emergence traps on experimental CWD. We measured local CWD volumes and determined the availability of forests of a suitable age within the landscape. We tested parasitoid responses to stand type, CWD volume, abundance of known and probable hosts and longitude. Additionally, we tested whether parasitoids responded to the area of habitat of a suitable age within radii from 0.2 to 10 km. Stand type appeared in best-fit models for all common species, suggesting that wasps respond strongly to habitat at local scales. Longitude (largely climate) featured commonly, but CWD volume was never significant. Host abundance appeared in best-fit models for three of five common species, proving significant only for Bracon obscurator, the abundance of which correlated with that of Orthotomicus laricis at both trap and site levels. Rhimphoctona spp. also correlated significantly with its known host Tetropium castaneum at the trap level. B. obscurator responded to habitat area at scales of 0.6–1 km and Cosmophorus regius responded at radii greater than 7 km, while the larger species did not respond strongly to habitat area. The role of habitat area at greater scales thus varied greatly amongst species, but our data suggest that dispersal of these common early successional species may not be strongly restricted at the current scale of fragmentation of their boreal habitats.  相似文献   

15.
《Journal of Asia》2020,23(4):1023-1029
Aphids are among the most destructive phytophagous pests of host plants, because of their rapid reproduction, parthenogenesis, extensive crop damage, and the transmission of many plant viruses. Since lady beetles are important predatory natural enemies of aphids, developing lady beetle attractants to increase their field abundance is vital for aphid control. Floral volatiles and other semiochemicals are reportedly attractive to lady beetles. In this research, a total of 58 floral volatiles were tested by Y-tube olfactometer assays, among which 29 were highly attractive to both Harmonia axyridis (Coleoptera: Coccinellidae) and Coccinella septempunctata (Coleoptera: Coccinellidae). Meanwhile, the results of wind tunnel trials showed that only isoamyl acetate, α-humulene, trans-3-hexen-1-ol, methyl salicylate, and β-pinene lure these two species. Thereafter, 15 semiochemicals from pests, natural enemies, and pest-infested crops were mixed with the selected floral volatiles, to determine optimum formulations for attracting lady beetles through wind tunnels and further field trials. Eventually, formulas (1) α-humulene: β-pinene: methyl salicylate: trans-3-hexen-1-ol = 1:3:3:10; (5) α-humulene: β-pinene: methyl salicylate:1-nonanal = 1:3:3:10; (8) α-humulene: β-pinene: methyl salicylate: indole = 1:3:3:10 (1, 5, and 8 are labels used for the various formulations in field trials) were successfully verified to be attractive to lady beetles in both pumpkin and wheat fields. These formulations will be of great significance in developing integrated pest management strategies for aphid control.  相似文献   

16.
Field parasitism of two lady beetles, a recently introduced species, Harmonia axyridis Pallas, and an indigenous species, Coleomegilla maculata lengi Timberlake, by Dinocampus coccinellae Schrank (Hymenoptera: Braconidae) was investigated in southwestern Québec. Adult coccinellids were sampled from June to September 2001 in alfalfa and corn fields. Parasitism rates were recorded by dissection and rearing of coccinellids in controlled condition. The average proportions of coccinellids with a parasitoid larva were 4.6%for H. axyridis and 32%for C. maculata but 0%of the H. axyridis and 5.9%of theC. maculatawere successfully parasitized. In July, more C. maculata than H. axyridiswere found to be parasitized and among all individuals dissected, C. maculata were more frequently found superparasitized than H. axyridis. Our results suggest that D. coccinellae is not well adapted to H. axyridis in Quebec. This is the first mention of H. axyridis being attacked by D. coccinellae in Canada.  相似文献   

17.
The walking and flight dispersal of marked overwintered and summer Colorado potato beetles (CPB), Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae), released in field box‐plots was monitored simultaneously in six habitats over a period of 4 days. The emigration out of plots by walking beetles was calculated from the catch in linear pitfall traps completely surrounding each box‐plot and emigration flight was estimated from the number of beetles missing from the plot or captured by the trap. Overwintered beetles dispersed sooner after release than summer beetles. Overall, the mean number of beetles retained by the habitat was significantly higher in the host habitat (potato) than in any non‐host habitat tested (soybean, pasture, bare ground, water, woodland). Unexpectedly, there was no or little difference in overall beetle retention between non‐host habitats except for higher retention in the water habitat. No difference in the ratio of flight over walking could be detected by the study between overwintered and summer CPB except in the water and woodland habitats. Twenty‐four hours after release, the highest ratios were obtained in the water and woodland habitats and the lowest in the bare‐ground habitat, but ratios were similar for all habitats, except water, after 96 h. As a population, under these experimental conditions, 96 h after release, it seems that CPB displayed a slight preference for flight over walking, with walking as a default mode. A fed and starved pre‐release treatment had no effect on dispersal rates or mode of dispersal. Essentially, our results showed that over a 96‐h period, northeastern North American CPB emigrated at similar rates from the various non‐host habitats encountered, except for water, using walking as much as flight. The host habitat retained CPB significantly longer than non‐host habitats but with a mode of dispersal ratio similar to that in non‐host habitats. The impact on dispersal of the various habitats encountered by CPB in the agro‐ecosystem was less important than expected suggesting that the interaction of environmental parameters is likely to have the most significant impact in determining dispersal rates and dispersal modes.  相似文献   

18.
Animal dispersal and subsequent settlement is a key process in the life history of many organisms, when individuals use demographic and environmental cues to target post-dispersal habitats where fitness will be highest. To investigate the hypothesis that environmental disturbance (habitat fragmentation) may alter these cues, we compared dispersal patterns of 60 red squirrels (Sciurus vulgaris) in three study sites that differ in habitat composition and fragmentation. We determined dispersal distances, pre- and post-dispersal habitat types and survival using a combination of capture–mark–recapture, radio-tracking and genetic parentage assignment. Most (75%) squirrels emigrated from the natal home range with mean dispersal distance of 1,014 ± 925 m (range 51–4,118 m). There were no sex-related differences in dispersal patterns and no differences in average dispersal distance, and the proportion of dispersers did not differ between sites. In one of the sites, dispersers settled in patches where density was lower than in the natal patch. In the least fragmented site, 90% of animals settled in the natal habitat type (habitat cuing) against 44–54% in the more strongly fragmented sites. Overall, more squirrels settled in the natal habitat type than expected based on habitat availability, but this was mainly due to individuals remaining within the natal wood. In the highly fragmented landscape, habitat cuing among emigrants did not occur more frequently than expected. We concluded that increased habitat fragmentation seemed to reduce reliable cues for habitat choice, but that dispersing squirrels settled in patches with lower densities of same-sex animals than at the natal home range or patch, independent of degree of fragmentation.  相似文献   

19.
Convergent lady beetles, Hippodamia convergens Guérin-Méneville, are a popular choice for aphid control in North America. An unidentified microsporidium was found in H. convergens adults that were purchased from a commercial insectary in 2004. This study examined egg cannibalism and egg predation as a means of horizontal transmission of the unidentified microsporidium among H. convergens larvae and three coccinellid species found in Nova Scotia: Coccinella septempunctata (seven-spotted lady beetle), C. trifasciata perplexa (three-banded lady beetle), and Harmonia axyridis (multicolored Asian lady beetle). The microsporidium was transmitted with 100% efficiency when first instars fed on microsporidia-infected eggs. Mean spore count data from smear preparations of infected beetles suggest that the infection was as heavy in C. trifasciata perplexa (a native coccinellid) (11.2 ± 0.96 spores/100 μm2) as it was in H. convergens (the natural host) (12.8 ± 1.16) but lighter in the introduced species C. septempunctata (7.5 ± 0.65) and H. axyridis (0.8 ± 0.11). For all of the beetle species examined, larval development was significantly longer for microsporidia-infected individuals than for their uninfected cohorts. The microsporidium had no effect on larval mortality. Based on the results of this study, field-collected H. convergens should be examined for microsporidia and uninfected individuals should be used to rear individuals for release in biological control programs. However, this is unlikely to happen because H. convergens are relatively easy and inexpensive to collect from their overwintering sites for redistribution.  相似文献   

20.
There are surprisingly few studies documenting effects of tropical cyclones (including hurricanes and typhoons) on rainforest animals, and especially insects, considering that many tropical forests are frequently affected by cyclonic disturbance. Consequently, we sampled a beetle assemblage inhabiting 18 upland rainforest sites in a fragmented landscape in north-eastern Queensland, Australia, using a standardised sampling protocol in 2002 and again 12 months after the passage of Severe Tropical Cyclone Larry (March 2006). The spatial configuration of sites allowed us to test if the effects of a cyclone and those from fragmentation interact. From all insect samples we extracted 12,568 beetles of 382 species from ten families. Beetle species composition was significantly different pre-and post-cyclone although the magnitude of faunal change was not large with 205 species, representing 96% of all individuals, present in both sampling events. Sites with the greatest changes to structure had the greatest changes in species composition. At the site level, increases in woody debris and wood-feeding beetle (Scolytinae) counts were significantly correlated but changes in the percent of ground vegetation were not mirrored by changes in the abundance of foliage-feeding beetles (Chrysomelidae). The overall direction of beetle assemblage change was consistent with increasing aridity, presumably caused by the loss of canopy cover. Sites with the greatest canopy loss had the strongest changes in the proportion of species previously identified in the pre-cyclone study as preferring arid or moist rainforest environments. The magnitude of fragmentation effects was virtually unaltered by the passage of Cyclone Larry. We postulate that in the short-term the effects of cyclonic disturbance and forest fragmentation both reduce the extent of moist, interior habitat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号