首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Calcineurin B-like proteins (CBL) and CBL-interacting protein kinases (CIPK) mediate plant responses to a variety of external stresses. Here we report that Arabidopsis CIPK6 is also required for the growth and development of plants. Phenotype of tobacco plants ectopically expressing a homologous gene ( CaCIPK6 ) from the leguminous plant chickpea ( Cicer arietinum ) indicated its functional conservation. A lesion in AtCIPK6 significantly reduced shoot-to-root and root basipetal auxin transport, and the plants exhibited developmental defects such as fused cotyledons, swollen hypocotyls and compromised lateral root formation, in conjunction with reduced expression of a number of genes involved in auxin transport and abiotic stress response. The Arabidopsis mutant was more sensitive to salt stress compared to wild-type, while overexpression of a constitutively active mutant of CaCIPK6 promoted salt tolerance in transgenic tobacco. Furthermore, tobacco seedlings expressing the constitutively active mutant of CaCIPK6 showed a developed root system, increased basipetal auxin transport and hypersensitivity to auxin. Our results provide evidence for involvement of a CIPK in auxin transport and consequently in root development, as well as in the salt-stress response, by regulating the expression of genes.  相似文献   

3.
4.
The Arabidopsis thaliana genome contains 20 cyclic nucleotide gated channel (CNGC) genes encoding putative non-selective ion channels. Classical and reverse genetic approaches have revealed that two members of this family (CNGC2 and CNGC4) play a role in plant defence responses whereas CNGC1 and CNGC10 may participate in heavy metal and cation transport. Yet, it remains to be resolved how the ion transport attributes of CNGCs are integrated into their physiological function. In this study, CNGC3 is characterized through heterologous expression, GUS- and GFP-reporter gene fusions, and by adopting a reverse genetics approach. A CNGC3-GFP fusion protein shows that it is mainly targeted to the plasma membrane. Promoter GUS studies demonstrate CNGC3 expression predominantly in the cortical and epidermal root cells, but also a ubiquitous presence in shoot tissues. Expression of CNGC3 in yeast indicates it can function as a Na(+) uptake and a K(+) uptake mechanism. cngc3 null mutations decreased seed germination in the presence of NaCl but not KCl. Relative to the wild type, mutant seedling growth is more resistant to the presence of toxic concentrations of NaCl and KCl. The ionic composition and ion uptake characteristics of wild-type and mutant seedlings suggests that the growth advantage in these conditions may be due to restricted ion influx in mutant plants, and that CNGC3 functions in the non-selective uptake of monovalent cations in Arabidopsis root tissue.  相似文献   

5.
6.
This study reports on the capability of the desert plant Chilopsis linearis (Cav.) Sweet (desert willow) to uptake gold (Au) from gold-enriched media at different plant-growth stages. Plants were exposed to 20, 40, 80, 160, and 320 mg Au L(-1) in agar-based growing media for 13, 18, 23, and 35 d. The Au content and oxidation state of Au in the plants were determined using an inductively coupled plasma/optical emission spectrometer (ICP/OES) and X-ray absorption spectroscopy (XAS), respectively. Gold concentrations ranging from 20 to 80 mg Au L(-1) did not significantly affect Chilopsis linearis plant growth. The concentration of gold in the plants increased as the age of the plant increased. The Au concentrations in leaves for the 20, 40, 80, and 160 mg Au L(-1) treatments were 32, 60, 62, and 179 mg Au kg(-1) dry weight mass, respectively, demonstrating the gold uptake capability of desert willow. The XAS data indicated that desert willow produced gold nanoparticles within plant tissues. Plants exposed to 160 mg Au L(-1) formed nanoparticles that averaged approximately 8, 35, and 18 A in root, stem, and leaves, respectively. It was observed that the average size of the Au nanoparticles formed by the plants is related to the total Au concentration in tissues and their location in the plant  相似文献   

7.
Metal transporters regulated by iron can transport a variety of divalent metals, suggesting that iron regulation is important for specificity of iron transport. In plants, the iron-regulated broad-range metal transporter IRT1 is required for uptake of iron into the root epidermis. Functions of other iron-regulated plant metal transporters are not yet established. To deduce novel plant iron transport functions we studied the regulation of four tomato metal transporter genes belonging to the nramp and irt families with respect to environmental and genetic factors influencing iron uptake. We isolated Lenramp1 and Lenramp3 from tomato and demonstrate that these genes encode functional NRAMP metal transporters in yeast, where they were iron-regulated and localized mainly to intracellular vesicles. Lenramp1 and Leirt1 revealed both root-specific expression and up-regulation by iron deficiency, respectively, in contrast to Leirt2 and Lenramp3. Lenramp1 and Leirt1, but not Lenramp3 and Leirt2, were down-regulated in the roots of fer mutant plants deficient in a bHLH gene regulating iron uptake. In chloronerva mutant plants lacking the functional enzyme for synthesis of the plant-specific metal chelator nicotianamine Leirt1 and Lenramp1 were up-regulated despite sufficient iron supply independent of a functional fer gene. Lenramp1 was expressed in the vascular root parenchyma in a similar cellular pattern as the fer gene. However, the fer gene was not sufficient for inducing Lenramp1 and Leirt1 when ectopically expressed. Based on our results, we suggest a novel function for NRAMP1 in mobilizing iron in the vascular parenchyma upon iron deficiency in plants. We discuss fer/nicotianamine synthase-dependent and -independent regulatory pathways for metal transporter gene regulation.  相似文献   

8.
Legume plants develop root nodules through symbiosis with rhizobia, and fix atmospheric nitrogen in this symbiotic organ. Development of root nodules is regulated by many metabolites including phytohormones. Previously, we reported that auxin is strongly involved in the development of the nodule vascular bundle and lenticel formation on the nodules of Lotus japonicus. Here we show that an ATP-binding cassette (ABC) protein, LjABCB1, which is a homologue of Arabidopsis auxin transporter AtABCB4, is specifically expressed during nodulation of L. japonicus. A reporter gene analysis indicated that the expression of LjABCB1 was restricted to uninfected cells adjacent to infected cells in the nodule, while no expression was observed in shoot apical meristems or root tips, in which most auxin transporter genes are expressed. The auxin transport activity of LjABCB1 was confirmed using a heterologous expression system.  相似文献   

9.
10.
11.
12.
植物重金属转运蛋白P_(1B)-ATPase结构和功能研究进展   总被引:2,自引:0,他引:2  
植物调节体内重金属的累积量以维持自身生存,其中,金属阳离子转运蛋白发挥了关键作用。P1B-ATPase是在生物中广泛存在的P-ATPase中的一个亚族,也是P-ATPase多个亚族中唯一参与重金属稳态的转运蛋白。拟南芥中共发现8个P1B-ATPase。研究表明,P1B-ATPase在植物体内具有维持金属的稳态、转运以及金属解毒的功能;与金属离子在根部区域的活化、吸收、地上部分的运输、贮存,以及植物对重金属的耐受性均相关。以下综述了P1B-ATPase的进化分类、结构特征以及功能方面的最新研究进展,并展望了其在植物修复领域的应用前景。  相似文献   

13.
Manganese (Mn) and iron (Fe) are essential mineral micronutrients for plants and their deficiency and or toxicity represents a serious agricultural problem. In rice the information about genes involved in Mn uptake from soil is scarce. Recently, we showed that OsNRAMP5 is a plasma membrane protein involved in Mn and Fe transport. The concentration of Mn in roots, shoots and xylem sap of OsNRAMP5 RNAi (OsNRAMP5i) plants was significantly reduced compared with WT plants. The expression of OsNRAMP5 is not controlled by Fe deficiency in root and was also observed in pistil, ovary, lemma and palea. These data show that rice would utilize OsNRAMP5 for constitutive Fe and Mn uptake, while OsNRAMP5 would also play a role in Fe and Mn transport during flowering and seed development.  相似文献   

14.
The ability of Thlaspi caerulescens, a zinc (Zn)/cadmium (Cd) hyperaccumulator, to accumulate extremely high foliar concentrations of toxic heavy metals requires coordination of uptake, transport, and sequestration to avoid damage to the photosynthetic machinery. The study of these metal hyperaccumulation processes at the cellular level in T. caerulescens has been hampered by the lack of a cellular system that mimics the whole plant, is easily transformable, and competent for longer term studies. Therefore, to better understand the contribution of the cellular physiology and molecular biology to Zn/Cd hyperaccumulation in the intact plant, T. caerulescens suspension cell lines were developed. Differences in cellular metal tolerance and accumulation between the cell lines of T. caerulescens and the related nonhyperaccumulator, Arabidopsis (Arabidopsis thaliana), were examined. A number of Zn/Cd transport-related differences between T. caerulescens and Arabidopsis cell lines were identified that also are seen in the whole plant. T. caerulescens suspension cell lines exhibited: (1) higher growth requirements for Zn; (2) much greater Zn and Cd tolerance; (3) enhanced expression of specific metal transport-related genes; and (4) significant differences in metal fluxes compared with Arabidopsis. One interesting feature exhibited by the T. caerulescens cell lines was that they accumulated less Zn and Cd than the Arabidopsis cell lines, most likely due to a greater metal efflux. This finding suggests that the T. caerulescens suspension cells represent cells of the Zn/Cd transport pathway between the root epidermis and leaf. We also show it is possible to stably transform T. caerulescens suspension cells, which will allow us to alter the expression of candidate hyperaccumulation genes and thus dissect the molecular and physiological processes underlying metal hyperaccumulation in T. caerulescens.  相似文献   

15.
Sustainable agriculture strives for healthy, high yielding plants with minimal agronomic inputs. Genetic solutions to increase nutrient uptake are desirable because they provide ongoing improvements. To achieve this it is necessary to identify genes involved in uptake and translocation of nutrients. We selected Medicago truncatula L. as a model because of its: i) close genetic relationship to food legumes, ii) use as a pasture legume in southern Australia and iii) availability of mapping populations generated from genetically diverse accessions. We discovered statistically significant differences between eight accessions for: root architecture in growth pouches, % root colonisation with the arbuscular mycorrhizal (AM) fungus Glomus intraradices, and plant tissue concentration of most macro- and micronutrients. Mycorrhizal colonisation had a significant effect on P concentration in roots but not shoots, Mg concentration in both roots and shoots, and the concentration of various micronutrients in shoots including Fe, Ca, but not Zn. Comparison of micronutrient uptake between root and shoot tissues showed that some M. truncatula accessions were more efficient at mobilisation of nutrients from roots to shoots. We are now in a position to use existing mapping populations of M. truncatula to identify quantitative trait loci important for human health and sustainable agriculture.  相似文献   

16.
Legumes play an important role in the soil nitrogen availability via symbiotic nitrogen fixation (SNF). Phosphate (Pi) deficiency severely impacts SNF because of the high Pi requirement of symbiosis. Whereas PHT1 transporters are involved in Pi uptake into nodules, it is unknown how Pi is transferred from the plant infected cells to nitrogen-fixing bacteroids. We hypothesized that Medicago truncatula genes homologous to Arabidopsis PHO1, encoding a vascular apoplastic Pi exporter, are involved in Pi transfer to bacteroids. Among the seven MtPHO1 genes present in M. truncatula, we found that two genes, namely MtPHO1.1 and MtPHO1.2, were broadly expressed across the various nodule zones in addition to the root vascular system. Expressions of MtPHO1.1 and MtPHO1.2 in Nicotiana benthamiana mediated specific Pi export. Plants with nodule-specific downregulation of both MtPHO1.1 and MtPHO1.2 were generated by RNA interference (RNAi) to examine their roles in nodule Pi homeostasis. Nodules of RNAi plants had lower Pi content and a three-fold reduction in SNF, resulting in reduced shoot growth. Whereas the rate of 33Pi uptake into nodules of RNAi plants was similar to control, transfer of 33Pi from nodule cells into bacteroids was reduced and bacteroids activated their Pi-deficiency response. Our results implicate plant MtPHO1 genes in bacteroid Pi homeostasis and SNF via the transfer of Pi from nodule infected cells to bacteroids.

Two members of the PHO1 family in Medicago truncatula are involved in the transport of phosphate from the infected nodule cells to the Sinorhizobium meliloti bacteroids.  相似文献   

17.
Arabidopsis (Arabidopsis thaliana) and tomato (Lycopersicon esculentum) show similar physiological responses to iron deficiency, suggesting that homologous genes are involved. Essential gene functions are generally considered to be carried out by orthologs that have remained conserved in sequence and map position in evolutionarily related species. This assumption has not yet been proven for plant genomes that underwent large genome rearrangements. We addressed this question in an attempt to deduce functional gene pairs for iron reduction, iron transport, and iron regulation between Arabidopsis and tomato. Iron uptake processes are essential for plant growth. We investigated iron uptake gene pairs from tomato and Arabidopsis, namely sequence, conserved gene content of the regions containing iron uptake homologs based on conserved orthologous set marker analysis, gene expression patterns, and, in two cases, genetic data. Compared to tomato, the Arabidopsis genome revealed more and larger gene families coding for the iron uptake functions. The number of possible homologous pairs was reduced if functional expression data were taken into account in addition to sequence and map position. We predict novel homologous as well as partially redundant functions of ferric reductase-like and iron-regulated transporter-like genes in Arabidopsis and tomato. Arabidopsis nicotianamine synthase genes encode a partially redundant family. In this study, Arabidopsis gene redundancy generally reflected the presumed genome duplication structure. In some cases, statistical analysis of conserved gene regions between tomato and Arabidopsis suggested a common evolutionary origin. Although involvement of conserved genes in iron uptake was found, these essential genes seem to be of paralogous rather than orthologous origin in tomato and Arabidopsis.  相似文献   

18.
Lotus Cell Walls and the Genes Involved in its Synthesis and Modification   总被引:1,自引:0,他引:1  
The lotus genome (Nelumbo nucifera (Gaertn.)) lacks the paleo-triplication found in other eudicots and has evolved remarkably slowly with fewer nucleotide mutations. It is thought to have greater retention of duplicated genes than other angiosperms. We evaluated the potential genes involved in cell wall synthesis and its modification, and ethylene synthesis and response. In many cell wall transferases and hydrolases families, lotus had fewer members in most families when compared to Arabidopsis. Lotus had similar or fewer members in each family as found in poplar, grape and papaya. The exceptions were in the sialyl and beta-glucuronsyl transferases where similar number were found as in the core eudicots. Lotus had similar numbers of polygalacturonase and pectin methyl esterases as found in Arabidopsis but fewer in all other hydrolases families. For starch degradation, lotus had only two alpha amylases predicted genes versus eight to ten in other eudicots, with similar numbers of beta amylase genes predicted. Lotus also had less than half the number of genes predicted for the enzymes involved in lignin and tannin synthesis compared to Arabidopsis. The stress plant growth regulator ethylene’s synthesis, reception and response predicted genes were fewer in lotus than other eudicots. Only two ethylene receptor genes were predicted in lotus with five reported for Arabidopsis and six for tomato. Our analysis does not supports the conclusion that this species has greater retention of duplicated genes though our data does support the conclusion that lotus split occurred at the base of the eudicots.  相似文献   

19.
Toxic metal pollution requires significant adjustments in plant metabolism. Here, we show that the plant microbiota plays an important role in this process. The endophytic Sporobolomyces ruberrimus isolated from a serpentine population of Arabidopsis arenosa protected plants against excess metals. Coculture with its native host and Arabidopsis thaliana inhibited Fe and Ni uptake. It had no effect on host Zn and Cd uptake. Fe uptake inhibition was confirmed in wheat and rape. Our investigations show that, for the metal inhibitory effect, the interference of microorganisms in plant ethylene homeostasis is necessary. Application of an ethylene synthesis inhibitor, as well as loss-of-function mutations in canonical ethylene signalling genes, prevented metal uptake inhibition by the fungus. Coculture with S. ruberrimus significantly changed the expression of Fe homeostasis genes: IRT1, OPT3, OPT6, bHLH38 and bHLH39 in wild-type (WT) A. thaliana. The expression pattern of these genes in WT plants and in the ethylene signalling defective mutants significantly differed and coincided with the plant accumulation phenotype. Most notably, down-regulation of the expression of IRT1 solely in WT was necessary for the inhibition of metal uptake in plants. This study shows that microorganisms optimize plant Fe and Ni uptake by fine-tuning plant metal homeostasis.  相似文献   

20.
植物对重金属耐性的分子生态机理   总被引:24,自引:0,他引:24       下载免费PDF全文
植物适应重金属元素胁迫的机制包括阻止和控制重金属的吸收、体内螯合解毒、体内区室化分隔以及代谢平衡等。近年来,随着分子生物学技术在生态学研究中的深入应用,控制这些过程的分子生态机理逐渐被揭示出来。菌根、根系分泌物以及细胞膜是控制重金属进入植物根系细胞的主要生理单元。外生菌根能显著提高寄主植物的重金属耐性,根系分泌物通过改变根际pH、改变金属物质的氧化还原状态和形成络合物等机理减少植物对重金属的吸收。目前,控制菌根和根系分泌物重金属抗性的分子生态机理还不清楚。但细胞膜跨膜转运器已得到深入研究,相关金属离子转运器被鉴定和分离,一些控制基因如铁锌控制运转相关蛋白(ZIP)类、自然抵抗相关巨噬细胞蛋白(Nramp)类、P1B-type ATPase类基因已被发现和克隆。金属硫蛋白(MTs)、植物螯合素(PCs)、有机酸及氨基酸等是植物体内主要的螯合物质,它们通过螯合作用固定金属离子,降低其生物毒性或改变其移动性。与MTs合成相关的MT-like基因已经被克隆,PCs合成必需的植物螯合素合酶(PCS), 即γ-Glu-Cys二肽转肽酶(γ-ECS) 的编码基因已经被克隆,控制麦根酸合成的氨基酸尼克烟酰胺(NA)在重金属耐性中的作用和分子机理也被揭示出来。ATP 结合转运器(ABC)和阳离子扩散促进器(CDF) 是植物体内两种主要膜转运器,通过它们和其它跨膜方式,重金属被分隔贮藏于液泡内。控制这些蛋白转运器合成的基因也已经被克隆,在植物中的表达证实其与重金属的体内运输和平衡有关。热休克蛋白(HSP)等蛋白类物质的产生是一种重要的体内平衡机制,其分子机理有待进一步研究。重金属耐性植物在这些环节产生了相关响应基因或功能蛋白质,分子克隆和转基因技术又使它们在污染治理上得到了初步的应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号