首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Resistant plant cultivars which used in breeding programs are considered one of the modern integrated management programs to reduce the usage of synthetic insecticides and environmental contamination the present study aimed to characterize the resistant and susceptible tomato cultivars to Tuta absoluta based on biochemical and molecular levels, in Egypt. The biochemical characters of the tested tomato cultivars (tomato- 86, tomato- Alissa, tomato- Fayarouz, tomato- Omniya, tomato- 036, tomato- GS) were determined colorimetrically and characterized by using native- polyacrylamide gel electrophoresis (PAGE) and agarose gel. Our results showed that there were variations highly significant in all biochemical constituents of the resistant tomato cultivar (tomato- 86) compared with the susceptible one (tomato- GS). Also, native-(PAGE) for peroxidase (POD) isoenzymes techniques of the tested tomato cultivars showed variations in protein band numbers and densities in tomato-86 resistant compared with tomato-GS susceptible to Tuta absoluta infestation. The correlation coefficient between total phenols and peroxidases in infested tomato leaves and percentages of damaged leaves with the tested insect pest was negative and highly significant, while in case of total proteins and reducing sugars in infested tomato leaves as well as lycopene contents in infested tomato fruits was positive, highly significant and significant, respectively. The correlation coefficient between tomato yield means and the infested fruit percentage with T. absoluta larvae was negative and highly significant. Respecting molecular diagnosis random amplified polymorphism DNA- polymerase chain reaction (RAPD- PCR), the results demonstrated that the presence of polymorphism in the resistant tomato cultivar (tomato- 86) compared with (tomato- GS), the most susceptible to the tested insect pest infestation.  相似文献   

2.
The South American tomato pinworm (Tuta absoluta) has recently invaded Europe and is rapidly spreading in the Afro-Eurasian continent where it is becoming a major pest on tomato crops. Laboratory tests were undertaken to evaluate the potential of 29 European strains of Trichogramma parasitoids to control T. absoluta. In addition to the host itself, the host plant (tomato) was used during the laboratory tests in order to increase the chance of selecting the best parasitoid strains. Trichogramma females were placed with T. absoluta eggs on a tomato leaflet in tubes. We compared the parasitism of T. absoluta by the various Trichogramma species tested to the Trichogramma species currently commercially available for the pest control in Europe, i.e. Trichogramma achaeae. Thereafter, the more promising strains were tested on a larger scale, in mesocosm (i.e. cages in greenhouses) and in greenhouse compartments to evaluate efficiency of laboratory selected strains under cropping conditions. The most efficient strain from the laboratory screening trials did not perform as efficiently under the greenhouse conditions. We discuss differences in parasitism levels among species and strains and among the different scales tested in the experiments, as well as implications of these results for further screening for biocontrol agents.  相似文献   

3.
The South American tomato pinworm, Tuta absoluta (Meyrick), is one of the major pests of tomato crop. Since its detection in the Mediterranean basin, it has been commonly controlled using chemical insecticides. However, inoculation and conservation of predatory mirids, integrated with sprays of selective insecticides, has been demonstrated to be a cost‐effective strategy for controlling this pest. In this work, we tested the efficacy of two sulphur formulations, dustable and wettable powder, for controlling T. absoluta on tomato under greenhouse and open‐field conditions. In addition, the side effects of both sulphur formulations on the predator, Nesidiocoris tenuis (Reuter), were evaluated under laboratory conditions. Dustable sulphur, applied weekly on tomato seedlings artificially infested with T. absoluta in greenhouse conditions, significantly reduced the infestation levels and was demonstrated to have a repellent effect on oviposition. Wettable sulphur was not effective for controlling T. absoluta populations in both greenhouse and open‐field experiments. In the side effect trials conducted with N. tenuis, only dustable sulphur resulted in being moderately harmful as a fresh residue and slightly harmful as a 7‐day‐old residue; no effects were recorded exposing the predator to 14‐day‐old sulphur residues. In contrast, wettable sulphur was classified as harmless to N. tenuis. Our results suggest that the use of sulphur, especially as dustable powder, could be considered as a tool in T. absoluta management strategies, although its side effects on Ntenuis should be taken into account. The implications of these results for the use of sulphur formulations in pest and disease management programmes in tomato crops are discussed.  相似文献   

4.
5.
2017年8月,在新疆维吾尔自治区伊犁哈萨克自治州露地鲜食番茄上发现一种鳞翅目害虫,以幼虫潜食叶肉、蛀食果实,经鉴定为南美番茄潜叶蛾。该害虫原产南美洲的秘鲁,2006年入侵欧洲的西班牙,截至2017年5月,已在南美洲、欧洲、非洲、中美洲和亚洲的80多个国家和地区发生,严重危害鲜食番茄、加工番茄和樱桃番茄/圣女果,产量损失最高可达80%~100%。本文提供了南美番茄潜叶蛾的危害情况及主要形态鉴定特征,提出了防范其进一步扩散危害的措施建议以及今后应开展的主要研究方向,包括植物检疫、发生分布调查、生物学生态学特性研究、天敌资源挖掘利用等,以为积极应对南美番茄潜叶蛾对我国农业生产安全的威胁提供参考。  相似文献   

6.
The tomato borer, Tuta absoluta (Meyrick) (Lep.: Gelechiidae), is an important tomato pest native to South America, which appeared in eastern Spain at the end of 2006. Prey suitability of T. absoluta eggs and larval instars was examined under laboratory conditions to evaluate whether two indigenous predators, Macrolophus pygmaeus (Rambur) and Nesidiocoris tenuis Reuter (Hem.: Miridae), can adapt to this invasive pest. Both predators preyed actively on T. absoluta eggs and all larval stages, although they preferred first‐instar larvae. Our results demonstrate that both mirids can adapt to this invasive pest, contributing to their value as biological control agents in tomato crops.  相似文献   

7.
Tuta absoluta, known as the South American tomato pinworm, is one of the most disastrous pests of tomato cultivations, presently menacing tomato cultivations worldwide. In 2006, T. absoluta invaded Spain from South America. Since then, it was rapidly spread to most European, African and Asian countries. Such alien invasive species can minimize crop production, whereas the increasing use of insecticides raises various environmental concerns as well as on control costs, control failure and the toxicity to non‐target organisms. The S. American tomato pinworm is mostly controlled by chemical insecticides, and failure to control it is not a rare phenomenon. Resistance to numerous insecticides has been reported and is mainly due to the fact that farmers do not follow a sustainable resistance management scheme. Several examples have been reported from several countries where the tomato pinworm is present. In order to develop a successful insecticide resistance management (IRM) strategy for any major pest, one needs to identify the baseline toxicity to insecticides and then monitor susceptibility levels . In Cyprus, the current status of susceptibility levels to the main insecticides that are used to control T. absoluta has never been studied before. Herein, nine Cypriot populations of the pest were subjected to laboratory bioassays between 2016 and 2018 using the main insecticides applied against it. We found that the insecticides chlorantraniliprole and indoxacarb could not control the Cypriot T. absoluta populations anymore, with a resistance ratio (RR) >28 and 3–23, respectively. Furthermore, mortality achieved by those two insecticides was 20.6%–72% for chlorantraniliprole and 27.5%–78% for indoxacarb. However, the insecticides emamectin benzoate and spinosad are very effective, since mortality to both of them ranged between 99.5% and 100%.  相似文献   

8.
The effectiveness of mating disruption to control the tomato leafminer, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae), in greenhouse tomato crops was evaluated in four trials carried out in winter–spring and summer–winter growing seasons in Southwestern Sardinia (Italy). Pheromone dispensers loaded with 60 mg of the natural blend of the major and minor sex pheromone component (rate 90 : 10) were applied in disrupted greenhouses at a rate of 1000/ha (60 g of active ingredient/ha). Male captures in monitoring pheromone traps, percentage of tomato plants infested by T. absoluta and damage on leaves and fruits were monitored weekly and compared in disrupted and untreated (control) greenhouses. In greenhouses disrupted with 1000 dispensers/ha, a reduction of 93–97% in male trap captures was observed, compared with control. Leaf damage was significantly lower in greenhouses disrupted with 1000 dispensers/ha than in control ones, with a reduction of infestation throughout the growing season ranging from 57% to 85%. Pheromone dispensers applied at the density of 1000/ha significantly reduced the percentage of damaged fruits by 62–89%. In control greenhouses, the highest damage on leaves and fruits was generally observed in edge plants, while leaf and fruit infestation was uniformly distributed in pheromone‐treated greenhouses, indicating an even distribution of the pheromone cloud inside the greenhouse. Mating disruption showed to be an efficient strategy to control in greenhouse the tomato leafminer and can be included in the overall tomato integrated pest management programs.  相似文献   

9.
Specifying the relationship between pests and their host plants in terms of damage is one of the basic concepts of integrated pest management (IPM) programmes. The crop loss and economic injury level (EIL) of Tuta absoluta (Lepidoptera: Gelechiidae) were determined on different tomato cultivars using gain threshold (field experiment) and regression (semi‐field experiment) methods. By assessing the crop loss in 2015 and 2016, four out of seven infested tomato cultivars had a significant yield loss in terms of weight of total fruits versus the control under the open‐field conditions. However, the total number of tomato cultivars had no significant difference to control treatment. The semi‐field experiment included six treatments (0, 2, 4, 6, 8 and 10 gravid females/plant) and examined two tomato cultivars. The tomato cages with between 6 and 10 gravid females/plant showed the highest number and weight of damaged fruits. Based on pesticide control costs, the market value of tomato and the control efficacy, we determined the EIL for T. absoluta. In the field experiment, the EIL value for T. absoluta on “Petomech,” “Cal JN3,” “Rio Grande” and “Early Urbana Y” cultivars was 4.15, 4.47, 4.70 and 5.04 larvae per plant, respectively. Based on regression equations, we calculated the EIL values for T. absoluta on “Cal JN3” and “Early Urbana Y” to be 4.75 and 5.44 larvae/plant, respectively. Crop loss assessment and EIL are necessary components of cost‐effective IPM programs and can be effective tools for making decisions about the application of pesticides against T. absoluta.  相似文献   

10.
The damsel bug, Nabis pseudoferus Remane (Hemiptera: Namidae), is a generalist predator of small arthropods, including key insect pests of vegetable crops. In this study, we characterized the predation and development of various N. pseudoferus life stages when preying on the eggs and first- and fourth-instar nymphs of the invasive South American tomato pinworm, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). These findings were compared to those of the bug’s common prey, cotton aphid, Aphis gossypii Glover (Hemiptera: Aphididae). Of the life stages tested, females showed the highest predation rate on all tested prey, due to their high longevity, large body, and great energy requirements for reproduction. The predator’s oviposition rate was clearly influenced by prey type, and was highest when feeding on fourth instars of T. absoluta. Considering the zoophytophagy of most of the life stages of other mirid species of tomato, and the lower propensity of N. pseudoferus to feed on plants, these results show that this species can be considered as a key indigenous natural enemy for sustainable pest control packages against T. absoluta in newly invaded areas.  相似文献   

11.
12.
The tomato borer Tuta absoluta, native to western South America, is an extremely devastating pest in tomato crops in most of South America, Europe and Africa North of the Sahel, causes yield losses up to 100% and decreases fruit quality in open field and greenhouse crops if control methods are not applied. In Brazil two other important lepidopteran pests – Neoleucinodes elegantalis and Helicoverpa zea – occur in tomato, as well as thrips, whiteflies and aphids. For control of these pests, frequent applications of pesticides of up to 5 times per week are needed, and these resulted in the appearance of resistant populations to a number of active ingredients and decimation of natural enemies. Biological control may offer a better, safer and more sustainable opportunity for pest management. Mirid predatory bugs are currently used with success in southern Europe to control T. absoluta and other pests. In Brazil, four Hemipteran predatory bugs, not yet known to attack T. absoluta, were found to successfully prey on eggs and larvae of this pest. The first results on their predation capacity, development, survival and reproduction on T. absoluta on tomato plants are presented.  相似文献   

13.
The first record of the omnivorous predator Dicyphus maroccanus Wagner (Hemiptera: Miridae) inhabiting tomato crops in the Valencia region (East Coast of Spain) was in 2009. Since then, D. maroccanus has often been found preying on the eggs of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) in this area. To evaluate this predator’s potential as a biological control agent, its life-history traits in the presence and absence of prey [(eggs of Ephestia kuehniella Zeller (Lepidoptera: Pyralidae)] on tomato plants were studied under laboratory conditions. Immature stages that preyed on eggs of E. kuehniella developed successfully. However, no nymph completed development on the plant without the addition of E. kuehniella eggs. To reach adulthood, male and female D. maroccanus nymphs consumed 267 and 312 E. kuehniella eggs, respectively. The net reproductive rate (R0) was estimated to be 34.52 female eggs per female, the generation time (T) was 40.48 days, and the estimated intrinsic rate of increase (rm) was 0.0868 females per female per day at 25 °C. In a second experiment, the capacity to detect plants infested or not infested with T. absoluta was studied using a Y-tube olfactometer. Female D. maroccanus were strongly attracted to the odor of T. absoluta-infested plants. In a third experiment, the capacity of D. maroccanus to control T. absoluta on tomato plants was investigated under extended laboratory conditions. Dicyphus maroccanus significantly reduced the number of T. absoluta-infested leaves in over 90 % of cases relative to control conditions. These results suggest that D. maroccanus could play a significant role in T. absoluta management. The potential of this zoophytophagous predator as a biocontrol agent on tomato crops is discussed.  相似文献   

14.
The tomato leafminer, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) is an important pest of tomato crops in South America and it has recently arrived in Europe affecting tomato plantations. The susceptibility of T. absoluta larvae and pupae to three species of entomopathogenic nematodes (Steinernema carpocapsae, Steinernema feltiae and Heterorhabditis bacteriophora) was examined under laboratory conditions. Leaf bioassays were conducted to evaluate the nematode’s capability to reach the larvae and kill them within the galleries. The efficacy of the three nematode species after foliar application to potted tomato plants was evaluated under greenhouse conditions. High larval mortality (78.6–100%) and low pupae mortality (<10%) was determined in laboratory experiments. In the leaf bioassay a high level of larval parasitation (77.1–91.7%) was recorded revealing the nematode’s capacity to kill the larvae inside the galleries. In the pot experiments nematode treatment reduced insect infection of tomato plants by 87–95%. The results demonstrate the suitability of entomopathogenic nematodes for controlling T. absoluta.  相似文献   

15.
The tomato leafminer, Tuta absoluta (Lepidoptera: Gelechiidae), is considered to be a major pest that damages tomato (Solanum lycopersicum L; Solanaceae) crops in South American, European, and Mediterranean countries. This insect species is polyphagous (i.e., feeds on many types of food); hence, it could also develop on other cultivated host plants, principally solanaceous plants, such as potato (S. tuberosum L.; Solanaceae) and eggplant (S. melongena L.; Solanaceae). Therefore, we tested the hypothesis that host plant choice by adult T. absoluta is influenced by plant volatile organic compounds and larval host plant experience. One tomato cultivar (cv.) ‘Moneymaker’ and three potato cv. ‘Charlotte’ ‘Bintje,’ and ‘Nicola’ were tested. Using a flying tunnel, we observed that females reared on tomato preferred flying toward tomato and, to a lesser extent, potato cv. ‘Charlotte.’ These preferences might be explained by the high release of terpenes by these two plants. When conducting oviposition choice assays, we found no preference between tomato and potato in the number of eggs laid by females that had been previously reared on either host plant. This study indicates that the host finding behavior of T. absoluta is mediated by solanaceous volatiles, while oviposition behavior appears to depend on additional stimuli. These results provide baseline information for use in the development of new control strategies against T. absoluta using semiochemicals and plant breeding.  相似文献   

16.
The omnivorous predators Nesidiocoris tenuis (Reuter) and Macrolophus pygmaeus Rambur (Hemiptera: Miridae) are indigenous natural enemies that commonly inhabit tomato crops in the Mediterranean basin. Both predators are mass-reared and primarily released to control whiteflies, although recently they have also contributed to the control of the invasive tomato pest Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). The life history traits of these two predators have been studied in the laboratory under the conditions of being fed exclusively the eggs of T. absoluta or the eggs of the factitious prey Ephestia kuehniella (Zeller) (Lepidoptera: Pyralidae). Immature stages of both predator species successfully developed while preying on eggs of T. absoluta. However, the mature M. pygmaeus females produced significantly lower numbers of offspring in comparison to the offspring produced when preying on E. kuehniella eggs. This resulted in higher than expected demographic indexes for N. tenuis when compared to M. pygmaeus (e.g., the intrinsic rates of increase were 0.127 and 0.005, respectively). Our results support previous studies on the potential of N. tenuis has as biological control agent of T. absoluta, and indicate that the role of M. pygmaeus in controlling T. absoluta in the absence of other food sources is possibly limited.  相似文献   

17.
Inundative biological control depends on the ability of natural enemies to disperse and persist in the environment. The objective was to evaluate the dispersion and persistence of Trichogrammatoidea bactrae (Nagaraja) on Tuta absoluta (Meyrick) eggs. Inundative releases of this parasitoid were performed in experimental tomato greenhouses. For vertical dispersion, leaves of the upper and middle third of plants were artificially infested with T. absoluta eggs; for horizontal dispersion, plants at increasing distances from a release point were infested. These eggs were renewed at days 2 and 4 to evaluate persistence. The amount of parasitized patches was registered. Logistic regression analysis was used. The position of the eggs in the plant did not affect the DE (discovery efficiency: proportion of parasitized patches). Time since release negatively affected the DE, while distance affected it only when plants were higher. These results could be used to adjust the release methodology of T. bactrae.  相似文献   

18.
Tuta absoluta is an invasive insect that originated from South America and has spread to Europe Africa and Asia. Since its detection in Spain in 2006, the pest is continuing to expand its geographical range, including the recent detection in several Sub-Saharan African countries. The present study proposed a model based on cellular automata to predict year-to-year the risk of the invasion and spread of T. absoluta across Africa. Using, land vegetation cover, temperature, relative humidity and yield of tomato production as key driving factors, we were able to mimic the spreading behavior of the pest, and to understand the role that each of these factors play in the process of propagation of invasion. Simulations by inferring the pest’s natural ability to fly long distance revealed that T. absoluta could reach South of Africa ten years after being detected in Spain (Europe). Findings also reveal that relative humidity and the presence of T. absoluta host plants are important factors for improving the accuracy of the prediction. The study aims to inform stakeholders in plant health, plant quarantine, and pest management on the risks that T. absoluta may cause at local, regional and event global scales. It is suggested that adequate measures should be put in place to stop, control and contain the process used by this pest to expand its range.  相似文献   

19.
In response to attack by herbivorous insect, plants produce semiochemicals which act to attract their natural enemies. Recent work on plant volatile compounds has shown that they may play multiple roles as communication signals and defense agents. Here we measured the volatile profile of tomato plants with and without oviposition by the herbivore moth, Tuta absoluta. We used solid phase micro extraction (SPME) sample pre-concentration techniques combined with gas chromatography-mass spectrometry. We have found that different volatile profiles emitted from tomato plants with oviposition by T. absoluta compared to control plants. Hexanal, (Z)-3-hexen-1-ol and an unidentified compound were isolated only from tomato plants with T. absoluta eggs. (Z)-3-hexen-1-ol was identified only from tomato plants with T. absoluta eggs that were laid three days earlier. The percentage of sesquiterpenes (e.g. δ-elemene) has been found to increase in the headspace of tomato plants with oviposition. These results in respect to indirect defense of tomato plants to T. absoluta are discussed.  相似文献   

20.
[目的]新发恶性外来入侵物种番茄潜叶蛾的入侵对我国番茄产业的安全生产造成了极大威胁。本文利用@RISK模型对化学防治、生物防治和理化诱控3种不同防治场景下我国番茄产业的潜在经济损失和投入防治后可挽回的经济损失进行综合评估,结果可为我国番茄潜叶蛾综合防治体系的构建提供参考。[方法]基于国内外文献收集到的番茄潜叶蛾危害数据(危害率、番茄产量损失率、防治成本和防治效果),结合全国农产品商务信息公共服务平台、FAO获得我国番茄的种植面积、产量及价格等相关数据,利用@RISK模型对不防治场景和3种不同防治场景下的番茄产业的经济损失进行评估。[结果]番茄潜叶蛾在不防治场景下每年给我国番茄产业造成的经济损失总量在(8226165.67~41903398.26)万元,在化学防治(使用合成杀虫剂)、生物防治(释放天敌昆虫和微生物制剂)和理化诱控(基于灯光和合成性信息素的诱杀产品)3种不同防治场景下能有效挽回经济损失,分别为89.83%、87.90%和89.19%。[结论]基于不同的防治场景能够有效挽回番茄潜叶蛾造成的经济损失,面对该害虫在我国的严峻扩散形势,建议各级政府和行业部门应高度重视并进一步加强番茄潜叶蛾的防控,保障我国番茄产业的安全生产。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号