首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Background

Intracytoplasmic sperm injection (ICSI) has been widely used to study the mechanisms of mammalian fertilization and to rescue male-factor infertility in humans and animals. However, very few systematic analyses have been conducted to define factors affecting the efficiency of ICSI. In this study, we undertook a large-scale series of ICSI experiments in mice to define the factors that might affect outcomes.

Methodology/Principal Findings

We used a 5×3×2 factorial design with the following factors: mouse genotype (ICR, C57BL/6, DBA/2, C3H/He, and 129/Sv strains), type of male germ cells (epididymal sperm, elongated or round spermatids), and their freeze–thawing treatment. The efficiencies (parameters) of each developmental step were analyzed by three-way ANOVA (significance level P<0.01). The type of male germ cells affected all the four parameters observed: oocyte survival after injection, cleavage of oocytes, implantation, and birth of offspring. Genotype affected the oocyte survival, cleavage and birth rates, whereas freeze–thawing had no effects on any of the parameters. There were significant genotype/cell type interactions for oocyte survival and cleavage, indicating that they were determined by a combination of strain and germ cell maturity. Multiple comparisons revealed that spermatozoa and elongated spermatids gave better implantation and birth rates than did round spermatids, while spermatozoa and elongated spermatozoa were indistinguishable in their ability to support embryonic development. The best overall efficiency (birth rate per oocytes injected) was obtained with frozen–thawed DBA/2 strain elongated spermatids (23.2±4.2%).

Conclusions/Significance

The present study provides the first comprehensive information on ICSI using the mouse as a model and will contribute to the efficient use of materials, time, and efforts in biomedical research and clinics involving ICSI.  相似文献   

2.
Gamete preservation techniques are essential in animal husbandry as well as in assisted reproduction for humans. In this research we attempted to use 3 different sperm preservation techniques in combination with newly developed techniques for intracytoplasmic sperm injection (ICSI) to fertilize eggs of a teleost fish, the Nile tilapia (Oreochromis niloticus). Of 47 eggs injected with fresh sperm, 11 (23%) were fertilized, 5 developed abnormally, and 4 developed normally and hatched; from these, one grew to adulthood. Nuclear DNA content of 4 of the abnormal embryos indicated that they were diploid. Flow cytometric analysis of a blood sample from the surviving ICSI fish collected 2 months after fertilization indicated that the fish was diploid. Of 45 eggs injected with cryopreserved sperm, 9 (20%) developed to the blastula stage. Of 40 eggs injected with sperm preserved in 70% methanol, none were fertilized. No injections were possible with freeze-dried Nile tilapia sperm owing to technical difficulties during manipulation. Although the findings described here are limited, they provide the first steps toward using sperm preservation methods in addition to cryopreservation for fertilization in fishes.  相似文献   

3.
Intracytoplasmic sperm injection (ICSI) has become the method of choice to treat human male infertility. One of the outstanding problems associated with this technique is our current lack of knowledge concerning the effect of sperm capacitation and motility upon the subsequent development of oocytes following ICSI. In the present study, we first examined the capacitation state of sperm exhibiting normal motility, along with sperm that had been activated, and examined the effect of reactive oxygen species (ROS) produced by these sperm types upon embryogenesis following bovine in vitro fertilization (IVF) and ICSI. Data showed that activated sperm reduced the chromosomal integrity of IVF/ICSI embryos at the blastocyst stage, while capacitated sperm produced ROS in capacitation media. Secondly, we treated sperm with carbonyl cyanide m-chlorophenyl hydrazine (CCCP), a chemical known to uncouple cell respiration within the mitochondria, and investigated the effect of this treatment upon blastocyst formation and chromosomal integrity at the blastocyst stage. Activated sperm in which the mitochondria had been treated with CCCP reduced levels of chromosomal aberration at the blastocyst stage following ICSI, by reducing mitochondrial activity in activated sperm. In conclusion, these findings suggest that capacitated sperm exhibiting activated motility induced chromosomal aberration during development to the blastocyst stage following ICSI. The injection of sperm exhibiting normal motility, or activated sperm in which mitochondrial activity had been reduced, improved the quality of ICSI-derived embryos. Therefore, the selection of sperm exhibiting progressive motility may not always be better for early embryo development and fetal growth following human ICSI, and that the use of a bovine model may contribute to a deeper understanding of sperm selection for human ICSI embryo development.  相似文献   

4.
Amphibian eggs have been widely used to study embryonic development. Early embryonic development is driven by maternally stored factors accumulated during oogenesis. In order to study roles of such maternal factors in early embryonic development, it is desirable to manipulate their functions from the very beginning of embryonic development. Conventional ways of gene interference are achieved by injection of antisense oligonucleotides (oligos) or mRNA into fertilized eggs, enabling under- or over-expression of specific proteins, respectively. However, these methods normally require more than several hours until protein expression is affected, and, hence, the interference of gene functions is not effective during early embryonic stages. Here, we introduce an experimental system in which expression levels of maternal proteins can be altered before fertilization. Xenopus laevis oocytes obtained from ovaries are defolliculated by incubating with enzymes. Antisense oligos or mRNAs are injected into defolliculated oocytes at the germinal vesicle (GV) stage. These oocytes are in vitro matured to eggs at the metaphase II (MII) stage, followed by intracytoplasmic sperm injection (ICSI). By this way, up to 10% of ICSI embryos can reach the swimming tadpole stage, thus allowing functional tests of specific gene knockdown or overexpression. This approach can be a useful way to study roles of maternally stored factors in early embryonic development.  相似文献   

5.
We studied the behavior and differentiation of pluripotent embryonic stem cells of R1 mice in vivo. Undifferentiated embryonic stem cells and differentiating embryoid bodies implanted in the abdominal cavity of irradiated mice were shown to form tumors containing the derivatives of all germ layers. Cells of the embryoid bodies form tumors two weeks after implantation, while undifferentiated embryonic stem cells form tumors only by week three.  相似文献   

6.
7.

Background

Human pancreatic islet transplantation is a prospective curative treatment for diabetes. However, the lack of donor pancreases greatly limits this approach. One approach to overcome the limited supply of donor pancreases is to generate functional islets from human embryonic stem cells (hESCs), a cell line with unlimited proliferative capacity, through rapid directed differentiation. This study investigated whether pancreatic insulin-producing cells (IPCs) differentiated from hESCs could correct hyperglycemia in severe combined immunodeficient (SCID)/non-obese diabetic (NOD) mice, an animal model of diabetes.

Methods

We generated pancreatic IPCs from two hESC lines, YT1 and YT2, using an optimized four-stage differentiation protocol in a chemically defined culture system. Then, about 5–7×106 differentiated cells were transplanted into the epididymal fat pad of SCID/NOD mice (n = 20). The control group were transplanted with undifferentiated hESCs (n = 6). Graft survival and function were assessed using immunohistochemistry, and measuring serum human C-peptide and blood glucose levels.

Results

The pancreatic IPCs were generated by the four-stage differentiation protocol using hESCs. About 17.1% of differentiated cells expressed insulin, as determined by flow cytometry. These cells secreted insulin/C-peptide following glucose stimulation, similarly to adult human islets. Most of these IPCs co-expressed mature β cell-specific markers, including human C-peptide, GLUT2, PDX1, insulin, and glucagon. After implantation into the epididymal fat pad of SCID/NOD mice, the hESC-derived pancreatic IPCs corrected hyperglycemia for ≥8 weeks. None of the animals transplanted with pancreatic IPCs developed tumors during the time. The mean survival of recipients was increased by implanted IPCs as compared to implanted undifferentiated hESCs (P<0.0001).

Conclusions

The results of this study confirmed that human terminally differentiated pancreatic IPCs derived from hESCs can correct hyperglycemia in SCID/NOD mice for ≥8 weeks.  相似文献   

8.
There is a close relationship between the rates at which dominant lethal mutations and heritable translocations are induced by ethyl methanesulfonate (EMS) or triethylenemelamine (TEM) in male postmeiotic germ cells. This relationship does not hold for isopropyl methanesulfonate (IMS), which induced only negligible frequencies of heritable translocations at doses that induced high levels of dominant lethal mutations. Nor does IMS behave like EMS and TEM in the degree to which eggs of different stocks of females repair premutational lesions that are carried in the sperm-large differences between stocks for IMS treatment and small differences for EMS or TEM treatment. These dissimilarities between IMS and the other two alkylating chemicals are postulated to be attributable to differences in the types of lesions present at the time of repair activity and to whether or not chromosomal aberrations are already fixed prior to postfertilization pronuclear DNA synthesis.  相似文献   

9.
Microfluidics can provide unique experimental tools to visualize the development of neural structures within a microscale device, which is followed by guidance of neurite growth in the axonal isolation compartment. We utilized microfluidics technology to monitor the differentiation and migration of neural cells derived from human embryonic stem cells (hESCs). We co-cultured hESCs with PA6 stromal cells, and isolated neural rosette-like structures, which subsequently formed neurospheres in suspension culture. Tuj1-positive neural cells, but not nestin-positive neural precursor cells (NPCs), were able to enter the microfluidics grooves (microchannels), suggesting that neural cell-migratory capacity was dependent upon neuronal differentiation stage. We also showed that bundles of axons formed and extended into the microchannels. Taken together, these results demonstrated that microfluidics technology can provide useful tools to study neurite outgrowth and axon guidance of neural cells, which are derived from human embryonic stem cells.  相似文献   

10.
研究镉暴露对小鼠附睾精子和睾丸生精细胞超微结构的变化以及镉对生精细胞凋亡相关基因bcl-2、bax表达水平的影响。采用24只雄性ICR小鼠随机分为4组,每组6只,分别以0.183、0.915、1.83mg/kg氯化镉腹腔注射,每天1次,连续5次,设阴性对照生理盐水组。于第6天透射电镜观察附睾精子超微结构、睾丸生精细胞核和线粒体超微结构的变化,免疫组化方法检测生精细胞Bcl-2、Bax表达水平。透射电镜观察显示,0.183mg/kg组精子超微结构无显著性变化,0.915mg/kg组精子头部两侧膜与头部胞质间隙轻微扩大,线粒体嵴间腔扩大且轻度空泡化,但与对照组相比无统计学意义(P>0.05)。1.83mg/kg组头部两侧膜与胞质间隙扩大,与对照组相比有显著性差异(P<0.05),尾部线粒体嵴间腔扩大且轻度空泡化,与对照组相比有显著性差异(P<0.05)。3种剂量处理组睾丸生精细胞核超微结构异常发生率显著高于对照组(P<0.05),且随着处理浓度的升高异常发生率升高;1.83mg/kg组线粒体肿胀空泡化发生率显著高于对照组(P<0.05)。3种剂量实验组生精细胞Bcl-2表达水平(吸光度)显著低于对照组(P<0.01),0.915mg/kg组Bax表达水平显著高于对照组和0.183、1.83mg/kg组(P<0.01)。3种剂量实验组Bcl-2/Bax吸光度比值显著低于对照组(P<0.01);0.915mg/kg组Bcl-2/Bax比值显著低于1.83mg/kg组(P<0.01)。上述结果提示:高浓度镉诱导附睾精子超微结构改变,高中低浓度镉致睾丸生精细胞超微结构的改变,生精细胞超微结构发生凋亡现象。镉对Bcl-2、Bax表达水平的改变可能是生精细胞凋亡的分子机制之一。  相似文献   

11.
12.
哺乳动物的早期胚胎发育和干细胞多能性由转录因子构成的基因网络所调控。2003年,在胚胎干细胞中发现的重要转录因子NANOG位于基因网络调控中心,对胚胎第二次命运决定和基态多能性的建立至关重要。该文将在NANOG生物学特征的基础上,重点讨论其在早期胚胎发育、胚胎干细胞与诱导性多能干细胞中的功能。  相似文献   

13.
Breast carcinoma is the most common female cancer with considerable metastatic potential. Discovery of new therapeutic approaches for treatment of metastatic breast cancer is still needed. Here, we reported our finding with niclosamide, an FDA approved anthelmintic drug. The potency of niclosamide on breast cancer was assessed in vitro and in vivo. In this investigation, we found that niclosamide showed a dramatic growth inhibition against breast cancer cell lines and induced apoptosis of 4T1 cells in a dose-dependent manner. Further, Western blot analysis demonstrated the occurrence of its apoptosis was associated with activation of Cleaved caspases-3, down-regulation of Bcl-2, Mcl-1 and Survivin. Moreover, niclosamide blocked breast cancer cells migration and invasion, and the reduction of phosphorylated STAT3Tyr705, phosphorylated FAKTyr925 and phosphorylated SrcTyr416 were also observed. Furthermore, in our animal experiments, intraperitoneal administration of 20 mg/kg/d niclosamide suppressed 4T1 tumor growth without detectable toxicity. Histological and immunohistochemical analyses revealed a decrease in Ki67-positive cells, VEGF-positive cells and microvessel density (MVD) and an increase in Cleaved caspase-3-positive cells upon niclosamide. Notably, niclosamide reduced the number of myeloid-derived suppressor cells (MDSCs) in tumor tissues and blocked formation of pulmonary metastases. Taken together, these results demonstrated that niclosamide may be a promising candidate for breast cancer.  相似文献   

14.
Self-renewal is a feature common to both adult and embryonic stem (ES) cells, as well as tumor stem cells (TSCs). The cyclin-dependent kinase inhibitor, p18INK4c, is a known tumor suppressor that can inhibit self-renewal of tumor cells or adult stem cells. Here, we demonstrate an opposite effect of p18 on ES cells in comparison with teratoma cells. Our results unexpectedly showed that overexpression of p18 accelerated the growth of mouse ES cells and embryonic bodies (EB); on the contrary, inhibited the growth of late stage teratoma. Up-regulation of ES cell markers (i.e., Oct4, Nanog, Sox2, and Rex1) were detected in both ES and EB cells, while concomitant down-regulation of various differentiation markers was observed in EB cells. These results demonstrate that p18 has an opposite effect on ES cells as compared with tumor cells and adult stem cells. Mechanistically, expression of CDK4 was significantly increased with overexpression of p18 in ES cells, likely leading to a release of CDK2 from the inhibition by p21 and p27. As a result, self-renewal of ES cells was enhanced. Our current study suggests that targeting p18 in different cell types may yield different outcomes, thereby having implications for therapeutic manipulations of cell cycle machinery in stem cells.  相似文献   

15.
16.
17.
Divergence of dispersal regimens has been suggested to be the selective basis for the evolutionary differentiation of agonistic phenotypes found in natural populations of house mice. Dispersal propensity may, therefore, be expected to exhibit heritable variation in wild house mice, ultimately related to motivational differences causing observable differences in agonistic behaviour. To test for heritable components in dispersal propensity in wild house mice, father–offspring regressions of dispersal latencies from residential social groups were determined in standardized seminatural social settings. To evaluate potential motivational causes of phenotypic variation in dispersal behaviour, all test animals (fathers, sons, and daughters) were scored prior to the dispersal experiment in a standardized behavioural test, at 60 d of age. Activities were monitored in a 1 m2 square test arena during 10‐min observation periods. Test arenas exhibited four equidistant openings leading to cages containing fresh, own, sibling, or foreign bedding material. The apparatus allowed for scoring anxiety, exploratory activity, and kin preference. Subsequently, test animals were exposed to a resident population in a semi‐natural enclosure providing a dispersal opportunity. Father–son regressions of dispersal latencies were significantly positive, but no significant relationship was found for daughters. Dispersal latency decreased with increasing exploratory activity scores in males, but increased in females. Anxiety as well as kin preferences did not affect dispersal propensity. Hence sex‐linked, motivational components reflect heritable social behaviour variation in male house mice that may ultimately be caused by diverging dispersal regimens.  相似文献   

18.
Histidinemia is an inherited metabolic disorder biochemically characterized by high concentrations of histidine in biological fluids. Usually affected patients are asymptomatic although some individuals have mental retardation and speech disorders. Considering the high prevalence of histidinemia and the scarce information on the effects of maternal histidinemia on their progeny, we investigated various parameters of oxidative stress in brain cortex and hippocampus of the offspring from female rats that received histidine (0.5 mg/g of body weight) in the course of pregnancy and lactation. At 21 days of age we found a significant increase of thiobarbituric acid reactive substances (TBARS), 2′,7′-dihydrodichlorofluorescein oxidation, superoxide dismutase (SOD) activity, catalase (CAT) activity, total sulfhydryls and glutathione (GSH) content in cerebral cortex and hippocampus. We also verified that at 60 days of age, GSH, SOD and total sulfhydryls returned to normal levels in brain cortex, while the other parameters decreased in the same structure. In the hippocampus, at 60 days of age GSH returned to normal levels, CAT persisted elevated and the other parameters decreased. These results indicate that histidine administration to female rats can induce oxidative stress in the brain from the offspring, which partially recovers 40 days after breastfeeding stopped.  相似文献   

19.
The role of alternative splicing in self-renewal, pluripotency and tissue lineage specification of human embryonic stem cells (hESCs) is largely unknown. To better define these regulatory cues, we modified the H9 hESC line to allow selection of pluripotent hESCs by neomycin resistance and cardiac progenitors by puromycin resistance. Exon-level microarray expression data from undifferentiated hESCs and cardiac and neural precursors were used to identify splice isoforms with cardiac-restricted or common cardiac/neural differentiation expression patterns. Splice events for these groups corresponded to the pathways of cytoskeletal remodeling, RNA splicing, muscle specification, and cell cycle checkpoint control as well as genes with serine/threonine kinase and helicase activity. Using a new program named AltAnalyze (http://www.AltAnalyze.org), we identified novel changes in protein domain and microRNA binding site architecture that were predicted to affect protein function and expression. These included an enrichment of splice isoforms that oppose cell-cycle arrest in hESCs and that promote calcium signaling and cardiac development in cardiac precursors. By combining genome-wide predictions of alternative splicing with new functional annotations, our data suggest potential mechanisms that may influence lineage commitment and hESC maintenance at the level of specific splice isoforms and microRNA regulation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号