首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
2.
Tumor necrosis factor-related apoptosis induced ligand (TRAIL) is an important apoptosis inducer in a variety of tumor cells. In the present study, we determined the underlying molecular mechanisms by which certain gastric cancer cells are resistant to TRAIL. We first detected expression of programmed cell death 4 (PDCD4) in three gastric cancer cell lines and identified its association with the sensitivity of gastric cancer cells to TRAIL. We then stably transfected PDCD4 cDNA or shRNA into these gastric cell lines. Our data showed that restoration of PDCD4 expression induced TRAIL sensitivity, whereas knockdown of PDCD4 expression reduced the sensitivity of these tumor cells to TRAIL treatment. PDCD4 was able to suppress expression of FLICE-inhibiting protein (FLIP), a negative regulator of apoptosis. Knockdown of FLIP expression using FLIP shRNA had similar effects as those of restored PDCD4 expression. Furthermore, the proteasome inhibitor MG132 was able to inhibit expression of FLIP mRNA and protein and upregulate the sensitivity of these cells to TRAIL treatment. Taken together, the results from the current study demonstrated that PDCD4 plays an important role in mediating the sensitivity of gastric cancer cells to TRAIL-induced apoptosis through FLIP suppression. Therefore, the proteasome inhibitor MG132 should be further evaluated for combination therapy with TRAIL.  相似文献   

3.
Certain classes of tumor cells respond favorably to TRAIL due to the presence of cell surface death receptors DR4 and DR5. Despite this preferential sensitivity, resistance to TRAIL remains a clinical problem and therefore the heightened interest in identifying compounds to revert tumor sensitivity to TRAIL. We recently demonstrated that the phosphatidylinositide-3-kinase (PI3K) inhibitor, LY294002, and its inactive analog LY303511, sensitized tumor cells to vincristine-induced apoptosis, independent of PI3K/Akt pathway. Intrigued by these findings, we investigated the effect of LY303511 on TRAIL-induced apoptosis in HeLa cells. Preincubation of cells with LY30 significantly amplified TRAIL signaling as evidenced by enhanced DNA fragmentation, caspases 2, 3, 8, and 9 activation, and reduction in the tumor colony formation. This increase in TRAIL sensitivity involved mitochondrial membrane permeabilization resulting in the egress of cytochrome c and second mitochondrial activator of caspase/direct IAP-binding protein with low PI, cleavage of X-linked inhibitor of apoptosis protein, and activation of caspase 9. We link this execution signal to the ability of LY30 to downregulate cFLIP(S) and oligomerize DR5, thus facilitating the signaling of the death initiating signaling complex. The subsequent exposure to TRAIL resulted in processing/activation of caspase 8 and cleavage of its substrate, the BH3 protein Bid. These data provide a novel mechanism of action of this small molecule with the potential for use in TRAIL-resistant tumors.  相似文献   

4.
5.
Malignant peripheral nerve sheath tumor (MPNST) is a rare aggressive form of sarcoma often associated with the tumor syndrome neurofibromatosis type 1 (NF1). We investigated the effects of tumor necrosis factor-related apoptosis inducing ligand (TRAIL) on NF1 associated MPNST and determinants of TRAIL sensitivity. MPNST cell lines with complete neurofibromin deficiency were sensitive to apoptotic cell death induced by TRAIL whereas MPNST cells with retained neurofibromin expression or normal human Schwann cells were resistant. Increased sensitivity to TRAIL was associated with overexpression of death receptors, especially DR5. Re-expression of the GAP related domain of neurofibromin (NF1-GRD) suppressed DR5 expression and decreased sensitivity to TRAIL. We show that death receptor expression and TRAIL sensitivity critically depend on c-MYC and that c-MYC amounts are increased by MEK/ERK and PI3K/AKT signalling pathways which are suppressed by neurofibromin. Furthermore PI3K/AKT signalling strongly suppresses the MYC-antagonist MAD1 which significantly contributes to TRAIL sensitivity. Re-expression of the NF1-GRD decreased c-MYC and increased MAD1 amounts suggesting that neurofibromin influences TRAIL sensitivity at least in part by modulating the MYC/MAX/MAD network. The phytochemical curcumin further increased the sensitivity of neurofibromin deficient MPNST cells to TRAIL. This was presumably mediated by ROS, as it correlated with increased ROS production, was blocked by N-acetylcysteine and mimicked by exogenous ROS.  相似文献   

6.
The Met receptor tyrosine kinase is overexpressed and/or activated in variety of human malignancies. Previously we have shown that c-Met is overexpressed in Middle Eastern papillary thyroid carcinoma (PTC) and significantly associated with an aggressive phenotype, but its role has not been fully elucidated in PTC. The aim of this study was to determine the functional link between the c-Met/AKT signaling pathway and death receptor 5 (DR5) in a large cohort of PTC in a tissue microarray format followed by functional studies using PTC cell lines and nude mice. Our data showed that high expressions of p-Met and DR5 were significantly associated with an aggressive phenotype of PTC and correlated with BRAF mutation. Treatment of PTC cell lines with PHA665752, an inhibitor of c-Met tyrosine kinase, inhibited cell proliferation and induced apoptosis via the mitochondrial pathway in PTC cell lines. PHA665752 treatment or expression of c-Met small interfering (si)RNA resulted in dephosphorylation of c-Met, AKT and its downstream effector molecules. Furthermore, PHA665752 treatment upregulated DR5 expression via generation of reactive oxygen species in PTC cell lines, and synergistically potentiated death receptor-induced apoptosis with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Finally, cotreatment with PHA665752 and TRAIL caused more pronounced effects on PTC xenograft tumor growth in nude mice. Our data suggest that the c-Met/AKT pathway may be a potential target for therapeutic intervention for treatment of PTC refractory to conventionally therapeutic modalities.  相似文献   

7.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and its receptors (TRAIL-R1 and TRAIL-R2) are promising targets for tumor therapy. However, their clinical use is limited because some tumors show resistance to TRAIL-treatment. Here, we analyzed epitopes of nine TRAIL-R1-specific human monoclonal antibodies and demonstrated at least five tentative epitopes on human TRAIL-R1. We found that some of the five were post-translationally modified on some tumor cell lines. Interestingly, one of them, an epitope of TR1-272 antibody (TR1-272-epitope) disappeared on the tumor cells that are more susceptible to TRAIL-induced apoptosis compared to TR1-272-epitope positive cells. Treatment of TR1-272-epitope negative cells with TRAIL induced large cluster formation of TRAIL-R1, while treatment of TR1-272-epiope positive cells with TRAIL did not. These results suggest that TR1-272-antibody might distinguish the TRAIL-R1 conformation that could deliver stronger death signals. Further analysis of epitope-appearance and sensitivity to TRAIL should clarify the mechanisms of TRAIL-induced apoptosis of tumor cells and would provide useful information about tumor therapy using TRAIL and TRAIL-R signaling.  相似文献   

8.
Death-associated protein (DAP) kinase plays an important role in IFN-gamma, tumor necrosis factor (TNF)-alpha, or Fas-ligand induced apoptosis. TNF-related apoptosis-inducing ligand (TRAIL) is a member of the TNF ligand family and can induce caspase-dependent apoptosis in cancer cells while sparing most of the normal cells. However, some of the cancer cell lines are insensitive to TRAIL, and such resistance cannot be explained by the dysfunction of TRAIL receptors or their known downstream targets. We reported previously that DAP kinase promoter is frequently methylated in non-small cell lung cancer (NSCLC), and such methylation is associated with a poor clinical outcome. To determine whether DAP kinase promoter methylation contributes to TRAIL resistance in NSCLC cells, we measured DAP kinase promoter methylation and its gene expression status in 11 NSCLC cell lines and correlated the methylation/expression status with the sensitivity of cells to TRAIL. Of the 11 cell lines, 1 had a completely methylated DAP kinase promoter and no detectable DAP kinase expression, 4 exhibited partial promoter methylation and substantially decreased gene expression, and the other 6 cell lines showed no methylation in the promoter and normal DAP kinase expression. Therefore, the amount of DAP kinase expression amount was negatively correlated to its promoter methylation (r = -0.77; P = 0.003). Interestingly, the cell lines without the DAP kinase promoter methylation underwent substantial apoptosis even in the low doses of TRAIL, whereas those with DAP kinase promoter methylation were resistant to the treatment. The resistance to TRAIL was reciprocally correlated to DAP kinase expression in 10 of the 11 cell lines at 10 ng/mL concentration (r = 0.91; P = 0.001). We treated cells resistant to TRAIL with 5-aza-2'-deoxycytidine, a demethylating reagent, and found that these cells expressed DAP kinase and became sensitive to TRAIL. These results suggest that DAP kinase is involved in TRAIL-mediated cell apoptosis and that a demethylating agent may have a role in enhancing TRAIL-mediated apoptosis in some NSCLC cells by reactivation of DAP kinase.  相似文献   

9.
10.
11.
Tumor necrosis factor-related apoptosis-inducing ligand (Apo2L/TRAIL) selectively induces apoptosis in transformed cells. Normal cells and certain tumor cells can evade Apo2L/TRAIL induced cell death, but the determinants of Apo2L/TRAIL sensitivity are poorly understood. To better understand the factors that contribute to Apo2L/TRAIL resistance, we characterized two colon carcinoma lines with pronounced differences in Apo2L/TRAIL sensitivity. Colo205 cells are highly sensitive to Apo2L/TRAIL whereas Colo320 cells are unresponsive. Components of the DISC (death inducing signaling complex) could be immunoprecipitated from both cell lines in response to Apo2L/TRAIL. Sensitizing agents including a proteasome inhibitor conferred Apo2L/TRAIL sensitivity in Colo320 cells, indicating that the apoptotic machinery was intact and functional. We specifically suppressed the expression of Bcl-2, FLIP or XIAP in Colo320 cells. Downregulation of either FLIP or XIAP but not Bcl-2 restored sensitivity of Colo320 cells to Apo2L/TRAIL. Moreover, stable knockdown of XIAP expression in Colo320 subcutaneous tumors resulted in suppression of tumor growth and sensitivity to Apo2L/TRAIL in vivo. Our results indicate that only a specific subset of anti-apoptotic proteins can confer resistance to Apo2L/TRAIL in Colo320 cells. Elucidation of the factors that contribute to Apo2L/TRAIL resistance in tumor cells may provide insight into combination therapies with Apo2L/TRAIL in a clinical setting.  相似文献   

12.
13.
Hepatocyte growth factor/scatter factor (HGF/SF) receptor c-Met is implicated in growth, invasion and metastasis of many tumors. Tumor cells harboring MET gene amplification are initially sensitive to c-Met tyrosine kinase inhibitors (TKI), but escape from long-term treatment has not been investigated. C-Met is a client of heat shock protein 90 (Hsp90) and is destabilized by Hsp90 inhibitors, suggesting that these drugs may inhibit tumors driven by MET amplification, although tumor escape under these conditions also has not been explored. Here, we evaluated the initial inhibitory effects of, and the likelihood of escape from, the Hsp90 inhibitor 17-allylamino-17-demethoxy-geldanamycin (17-AAG) and the c-Met TKI SU11274, using two cell lines harboring MET gene amplification. 17-AAG inhibited cell growth in both cell lines and induced substantial apoptosis, whereas SU11274 was only growth inhibitory in one cell line. In both cell lines, c-Met-dependent Akt, Erk and/or STAT3 signaling, as well as activation of the EGFR family, resumed shortly after treatment with c-Met TKI despite sustained c-Met inhibition. PKC δ upregulation may participate in reactivation of c-Met downstream signaling in both cell lines. In contrast to c-Met TKI, 17-AAG destabilized c-Met protein and durably blocked reactivation of downstream signaling pathways and EGFR family members. Our data demonstrate that downstream signaling in tumor cells over-expressing c-Met is not stably suppressed by c-Met TKI, even though c-Met remains fully inhibited. In contrast, Hsp90 inhibitors provide long-lasting suppression of c-Met-dependent signaling, and these drugs should be further evaluated in tumors driven by MET gene amplification.  相似文献   

14.
15.
Non-Hodgkin lymphomas (NHLs) are characterized by specific abnormalities that alter cell cycle regulation, DNA damage response, and apoptotic signaling. It is believed that cancer cells are particularly sensitive to cell death induced by tumor necrosis factor α–related apoptosis-inducing ligand (TRAIL). However, many cancer cells show blocked TRAIL signaling due to up-regulated expression of anti-apoptotic factors, such as cFLIP. This hurdle to TRAIL’s tumor cytotoxicity might be overcome by combining TRAIL-based therapy with drugs that reverse blockages of its apoptotic signaling. In this study, we investigated the impact of a pan-methyltransferase inhibitor (3-deazaneplanocin A, or DZNep) on TRAIL-induced apoptosis in aggressive B-cell NHLs: mantle cell, Burkitt, and diffuse large B-cell lymphomas. We characterized TRAIL apoptosis regulation and caspase activation in several NHL-derived cell lines pre-treated with DZNep. We found that DZNep increased cancer cell sensitivity to TRAIL signaling by promoting caspase-8 processing through accelerated cFLIP degradation. No change in cFLIP mRNA level indicated independence of promoter methylation alterations in methyltransferase activity induced by DZNep profoundly affected cFLIP mRNA stability and protein stability. This appears to be in part through increased levels of cFLIP-targeting microRNAs (miR-512-3p and miR-346). However, additional microRNAs and cFLIP-regulating mechanisms appear to be involved in DZNep-mediated enhanced response to extrinsic apoptotic stimuli. The capacity of DZNep to target cFLIP expression on multiple levels underscores DZNep’s potential in TRAIL-based therapies for B-cell NHLs.  相似文献   

16.
The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a potent inducer of apoptosis in tumor cell lines, whereas normal cells appear to be protected from its cytotoxic effects. Therefore TRAIL holds promise as a potential therapeutic agent against cancer. To elucidate some of the critical factors that contribute to TRAIL resistance, we performed a genetic screen in the human colon carcinoma cell line SW480 by infecting this TRAIL-sensitive cell line with a human placental cDNA retroviral library and isolating TRAIL-resistant clones. Characterization of the resulting clones for inhibitors of TRAIL-induced death (ITIDs) led to the isolation of c-FLIP(S), Bax inhibitor 1, and Bcl-XL as candidate suppressors of TRAIL signaling. We have demonstrated that c-FLIP(S) and Bcl-XL are sufficient when overexpressed to convey resistance to TRAIL treatment in previously sensitive cell lines. Furthermore both c-FLIP(S) and Bcl-XL protected against overexpression of the TRAIL receptors DR4 and KILLER/DR5. When c-FLIP(S) and Bcl-XL were overexpressed together in SW480 and HCT 116, an additive inhibitory effect was observed after TRAIL treatment suggesting that these two molecules function in the same pathway in the cell lines tested. Furthermore, we have demonstrated for the first time that a proapoptotic member of the Bcl-2 family, Bax, is required for TRAIL-mediated apoptosis in HCT 116 cells. Surprisingly, we have found that the serine/threonine protein kinase Akt, which is an upstream regulator of both c-FLIP(S) and Bcl-XL, is not sufficient when overexpressed to protect against TRAIL in the cell lines tested. These results suggest a key role for c-FLIP(S), Bcl-XL, and Bax in determining tumor cell sensitivity to TRAIL.  相似文献   

17.
Metadherin (MTDH), the newly discovered gene, is overexpressed in more than 40% of breast cancers. Recent studies have revealed that MTDH favors an oncogenic course and chemoresistance. With a number of breast cancer cell lines and breast tumor samples, we found that the relative expression of MTDH correlated with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) sensitivity in breast cancer. In this study, we found that knockdown of endogenous MTDH cells sensitized the MDA-MB-231 cells to TRAIL-induced apoptosis both in vitro and in vivo. Conversely, stable overexpression of MTDH in MCF-7 cells enhanced cell survival with TRAIL treatment. Mechanically, MTDH down-regulated caspase-8, decreased caspase-8 recruitment into the TRAIL death-inducing signaling complex, decreased caspase-3 and poly(ADP-ribose) polymerase-2 processing, increased Bcl-2 expression, and stimulated TRAIL-induced Akt phosphorylation, without altering death receptor status. In MDA-MB-231 breast cancer cells, sensitization to TRAIL upon MTDH down-regulation was inhibited by the caspase inhibitor Z-VAD-fmk (benzyloxycarbonyl-VAD-fluoromethyl ketone), suggesting that MTDH depletion stimulates activation of caspases. In MCF-7 breast cancer cells, resistance to TRAIL upon MTDH overexpression was abrogated by depletion of Bcl-2, suggesting that MTDH-induced Bcl-2 expression contributes to TRAIL resistance. We further confirmed that MTDH may control Bcl-2 expression partly by suppressing miR-16. Collectively, our results point to a protective function of MTDH against TRAIL-induced death, whereby it inhibits the intrinsic apoptosis pathway through miR-16-mediated Bcl-2 up-regulation and the extrinsic apoptosis pathway through caspase-8 down-regulation.  相似文献   

18.
TNF-related apoptosis-inducing ligand or Apo2L (Apo2L/TRAIL) is a promising anti-cancer drug owing to its ability to trigger apoptosis by binding to TRAIL-R1 or TRAIL-R2, two membrane-bound receptors that are often expressed by tumor cells. TRAIL can also bind non-functional receptors such as TRAIL-R4, but controversies still exist regarding their potential to inhibit TRAIL-induced apoptosis. We show here that TRAIL-R4, expressed either endogenously or ectopically, inhibits TRAIL-induced apoptosis. Interestingly, the combination of chemotherapeutic drugs with TRAIL restores tumor cell sensitivity to apoptosis in TRAIL-R4-expressing cells. This sensitization, which mainly occurs at the death-inducing signaling complex (DISC) level, through enhanced caspase-8 recruitment and activation, is compromised by c-FLIP expression and is independent of the mitochondria. Importantly, TRAIL-R4 expression prevents TRAIL-induced tumor regression in nude mice, but tumor regression induced by TRAIL can be restored with chemotherapy. Our results clearly support a negative regulatory function for TRAIL-R4 in controlling TRAIL signaling, and unveil the ability of TRAIL-R4 to cooperate with c-FLIP to inhibit TRAIL-induced cell death.  相似文献   

19.
The tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL/APO2L) is a member of the TNF gene superfamily that induces apoptosis upon engagement of cognate death receptors. While TRAIL is relatively non-toxic to normal cells, it selectively induces apoptosis in many transformed cells. Nevertheless, breast tumor cells are particularly resistant to the effects of TRAIL. Here we report that, in combination with the cyclin-dependent kinase inhibitor roscovitine, exposure to TRAIL induced marked apoptosis in the majority of TRAIL-resistant breast cancer cell lines examined. Roscovitine facilitated TRAIL death-inducing signaling complex formation and the activation of caspase-8. The cFLIP(L) and cFLIP(S) FLICE-inhibitory proteins were significantly down-regulated following exposure to roscovitine and, indeed, the knockdown of cFLIP isoforms by siRNA sensitized breast tumor cells to TRAIL-induced apoptosis. In addition, we demonstrate that roscovitine strongly suppressed Mcl-1 expression and up-regulated E2F1 protein levels in breast tumor cells. Significantly, the silencing of Mcl-1 by siRNA sensitized breast tumor cells to TRAIL-induced apoptosis. Furthermore, the knockdown of E2F1 protein by siRNA reduced the sensitizing effect of roscovitine in TRAIL-induced apoptosis. In summary, our results reveal a pleitropic mechanism for the pro-apoptotic influence of roscovitine, highlighting its potential as an antitumor agent in breast cancer in combination with TRAIL.  相似文献   

20.
Although signaling by death receptors involves the recruitment of common components into their death-inducing signaling complexes (DISCs), apoptosis susceptibility of various tumor cells to each individual receptor differs quite dramatically. Recently it was shown that, besides caspase-8, caspase-10 is also recruited to the DISCs, but its function in death receptor signaling remains unknown. Here we show that expression of caspase-10 sensitizes MCF-7 breast carcinoma cells to TRAIL- but not tumor necrosis factor (TNF)-induced apoptosis. This sensitization is most obvious at low TRAIL concentrations or when apoptosis is assessed at early time points. Caspase-10-mediated sensitization for TRAIL-induced apoptosis appears to be dependent on caspase-3, as expression of caspase-10 in MCF-7/casp-3 cells but not in caspase-3-deficient MCF-7 cells overcomes TRAIL resistance. Interestingly, neutralization of TRAIL receptor 2 (TRAIL-R2), but not TRAIL-R1, impaired apoptosis in a caspase-10-dependent manner, indicating that caspase-10 enhances TRAIL-R2-induced cell death. Furthermore, whereas processing of caspase-10 was delayed in TNF-treated cells, TRAIL triggered a very rapid activation of caspase-10 and -3. Therefore, we propose a model in which caspase-10 is a crucial component during TRAIL-mediated apoptosis that in addition actively requires caspase-3. This might be especially important in systems where only low TRAIL concentrations are supplied that are not sufficient for the fast recruitment of caspase-8 to the DISC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号