首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Abscisic acid (ABA) is a phytohormone that positively regulates seed dormancy and stress tolerance. PYL/RCARs were identified an intracellular ABA receptors regulating ABA-dependent gene expression in Arabidopsis thaliana. However, their function in monocot species has not been characterized yet. Herein, it is demonstrated that PYL/RCAR orthologues in Oryza sativa function as a positive regulator of the ABA signal transduction pathway. Transgenic rice plants expressing OsPYL/RCAR5, a PYL/RCAR orthologue of rice, were found to be hypersensitive to ABA during seed germination and early seedling growth. A rice ABA signalling unit composed of OsPYL/RCAR5, OsPP2C30, SAPK2, and OREB1 for ABA-dependent gene regulation was further identified, via interaction assays and a transient gene expression assay. Thus, a core signalling unit for ABA-responsive gene expression modulating seed germination and early seedling growth in rice has been unravelled. This study provides substantial contributions toward understanding the ABA signal transduction pathway in rice.  相似文献   

2.
Arabidopsis PP2C belonging to group A have been extensively worked out and known to negatively regulate ABA signaling. However, rice (Oryza sativa) orthologs of Arabidopsis group A PP2C are scarcely characterized functionally. We have identified a group A PP2C from rice (OsPP108), which is highly inducible under ABA, salt and drought stresses and localized predominantly in the nucleus. Genetic analysis revealed that Arabidopsis plants overexpressing OsPP108 are highly insensitive to ABA and tolerant to high salt and mannitol stresses during seed germination, root growth and overall seedling growth. At adult stage, OsPP108 overexpression leads to high tolerance to salt, mannitol and drought stresses with far better physiological parameters such as water loss, fresh weight, chlorophyll content and photosynthetic potential (Fv/Fm) in transgenic Arabidopsis plants. Expression profile of various stress marker genes in OsPP108 overexpressing plants revealed interplay of ABA dependent and independent pathway for abiotic stress tolerance. Overall, this study has identified a potential rice group A PP2C, which regulates ABA signaling negatively and abiotic stress signaling positively. Transgenic rice plants overexpressing this gene might provide an answer to the problem of low crop yield and productivity during adverse environmental conditions.  相似文献   

3.
4.
To confer abscisic acid (ABA) and/or stress-inducible gene expression, an ABA-response complex (ABRC1) from the barley (Hordeum vulgare L.) HVA22 gene was fused to four different lengths of the 5′ region from the rice (Oryza sativa L.) Act1 gene. Transient assay of β-glucuronidase (GUS) activity in barley aleurone cells shows that, coupled with ABRC1, the shortest minimal promoter (Act1–100P) gives both the greatest induction and the highest level of absolute activity following ABA treatment. Two plasmids with one or four copies of ABRC1 combined with the same Act1–100P and HVA22(I) of barley HVA22 were constructed and used for stable expression of uidA in transgenic rice plants. Three Southern blot-positive lines with the correct hybridization pattern for each construct were obtained. Northern analysis indicated that uidA expression is induced by ABA, water-deficit, and NaCl treatments. GUS activity assays in the transgenic plants confirmed that the induction of GUS activity varies from 3- to 8-fold with different treatments or in different rice tissues, and that transgenic rice plants harboring four copies of ABRC1 show 50% to 200% higher absolute GUS activity both before and after treatments than those with one copy of ABRC1.  相似文献   

5.
BackgroundAbiotic stresses affect plants in several ways and as such, phytohormones such as abscisic acid (ABA) play an important role in conferring tolerance towards these stresses. Hence, to comprehend the role of ABA and its interaction with receptors of the plants, a thorough investigation is essential.AimThe current study aimed to identify the ABA receptors in Oryza sativa, to find the receptor that binds best with ABA and to examine the mutations present to help predict better binding of the receptors with ABA.MethodsProtein sequences of twelve PYL (Pyrabactin resistance 1) and seven PP2C (type 2C protein phosphatase) receptors were retrieved from the Rice Annotation Project database and their 3D structures were predicted using RaptorX. Protein-ligand molecular docking studies between PYL and ABA were performed using AutoDock 1.5.6, followed by 100ns molecular dynamic simulation studies using Desmond to determine the acceptable conformational changes after docking via root mean square deviation RMSD plot analysis. Protein-protein docking was then carried out in three sets: PYL-PP2Cs, PYL-ABA-PP2C and PYL(mut)-ABA-PP2C to scrutinize changes in structural conformations and binding energies between complexes. The amino acids of interest were mapped at their respective genomic coordinates using SNP-seek database to ascertain if there were any naturally occurring single nucleotide polymorphisms (SNPs) responsible for triggering rice PYLs mutations.ResultsInitial protein-ligand docking studies revealed good binding between the complexes, wherein PYL6-ABA complex showed the best energy of -8.15 kcal/mol. The 100ns simulation studies revealed changes in the RMSD values after docking, indicating acceptable conformational changes. Furthermore, mutagenesis study performed at specific PYL-ABA interacting residues followed by downstream PYL(mut)-ABA-PP2C protein-protein docking results after induction of mutations demonstrated binding energy of -8.17 kcal/mol for PP2C79-PYL11-ABA complex. No naturally occurring SNPs that were responsible for triggering rice PYL mutations were identified when specific amino acid coordinates were mapped at respective genomic coordinates.ConclusionThus, the present study provides valuable insights on the interactions of ABA receptors in rice and induced mutations in PYL11 that can enhance the downstream interaction with PP2C.  相似文献   

6.
Root system architecture (RSA) is a key factor in the efficiency of nutrient capture and water uptake in plants. Understanding the genetic control of RSA will be useful in minimizing fertilizer and water usage in agricultural cropping systems. Using a hydroponic screen and a gel-based imaging system, we identified a rice (Oryza sativa) gene, VAP-RELATED SUPPRESSOR OF TOO MANY MOUTHS1 (OsVST1), which plays a key role in controlling RSA. This gene encodes a homolog of the VAP-RELATED SUPPRESSORS OF TOO MANY MOUTHS (VST) proteins in Arabidopsis (Arabidopsis thaliana), which promote signaling in stomata by mediating plasma membrane–endoplasmic reticulum contacts. OsVST1 mutants have shorter primary roots, decreased root meristem size, and a more compact RSA. We show that the Arabidopsis VST triple mutants have similar phenotypes, with reduced primary root growth and smaller root meristems. Expression of OsVST1 largely complements the short root length and reduced plant height in the Arabidopsis triple mutant, supporting conservation of function between rice and Arabidopsis VST proteins. In a field trial, mutations in OsVST1 did not adversely affect grain yield, suggesting that modulation of this gene could be used as a way to optimize RSA without an inherent yield penalty.

Root meristem size and root system architecture in both rice and Arabidopsis are regulated by proteins related to mediators plasma membrane–endoplasmic reticulum contact.  相似文献   

7.
Perception of extracellular signals by cell surface receptors is of central importance to eukaryotic development and immunity. Kinases that are associated with the receptors or are part of the receptors themselves modulate signaling through phosphorylation events. The rice (Oryza sativa L.) XA21 receptor kinase is a key recognition and signaling determinant in the innate immune response. A yeast two-hybrid screen using the intracellular portion of XA21, including the juxtamembrane (JM) and kinase domain as bait, identified a protein phosphatase 2C (PP2C), called XA21 binding protein 15 (XB15). The interaction of XA21 and XB15 was confirmed in vitro and in vivo by glutathione-S-transferase (GST) pull-down and co-immunoprecipitation assays, respectively. XB15 fusion proteins purified from Escherichia coli and from transgenic rice carry PP2C activity. Autophosphorylated XA21 can be dephosphorylated by XB15 in a temporal- and dosage-dependent manner. A serine residue in the XA21 JM domain is required for XB15 binding. Xb15 mutants display a severe cell death phenotype, induction of pathogenesis-related genes, and enhanced XA21-mediated resistance. Overexpression of Xb15 in an XA21 rice line compromises resistance to the bacterial pathogen Xanthomonas oryzae pv. oryzae. These results demonstrate that Xb15 encodes a PP2C that negatively regulates the XA21-mediated innate immune response.  相似文献   

8.
Protein phosphatase 2C clade A members are major signaling components in the ABA-dependent signaling cascade that regulates seed germination. To elucidate the role of PP2CA genes in germination of rice seed, we selected OsPP2C51, which shows highly specific expression in the embryo compared with other protein phosphatases based on microarray data. GUS histochemical assay confirmed that OsPP2C51 is expressed in the seed embryo and that this expression pattern is unique compared with those of other OsPP2CA genes. Data obtained from germination assays and alpha-amylase assays of OsPP2C51 knockout and overexpression lines suggest that OsPP2C51 positively regulates seed germination in rice. The expression of alpha-amylase synthesizing genes was high in OsPP2C51 overexpressing plants, suggesting that elevated levels of OsPP2C51 might enhance gene expression related to higher rates of seed germination. Analysis of protein interactions between ABA signaling components showed that OsPP2C51 interacts with OsPYL/RCAR5 in an ABA-dependent manner. Furthermore, interactions were observed between OsPP2C51 and SAPK2, and between OsPP2C51 and OsbZIP10 and we found out that OsPP2C51 can dephosphorylates OsbZIP10. These findings suggest the existence of a new branch in ABA signaling pathway consisting of OsPYL/RCAR-OsPP2C-bZIP apart from the previously reported OsPYL/RCAR-OsPP2C-SAPK-bZIP. Overall, our result suggests that OsPP2C51 is a positive regulator of seed germination by directly suppressing active phosphorylated OsbZIP10.  相似文献   

9.
The phytohormone gibberellic acid (GA) regulates diverse aspects of plant growth and development. GA responses are triggered by the degradation of DELLA proteins, which function as repressors in GA signaling pathways. Recent studies in Arabidopsis thaliana and rice (Oryza sativa) have implied that the degradation of DELLA proteins occurred via the ubiquitin-proteasome system. Here, we developed an Arabidopsis cell-free system to recapitulate DELLA protein degradation in vitro. Using this cell-free system, we documented that Lys-29 of ubiquitin is the major site for ubiquitin chain formation to mediate DELLA protein degradation. We also confirmed the specific roles of GA receptors and multisubunit E3 ligase components in regulating DELLA protein degradation. In addition, blocking DELLA degradation with a PP1/PP2A phosphatase inhibitor in our cell-free assay suggested that degradation of DELLA proteins required protein Ser/Thr dephosphorylation activity. Furthermore, our data revealed that the LZ domain of Arabidopsis DELLA proteins is essential for both their stability and activity. Thus, our in vitro degradation system provides biochemical insights into the regulation of DELLA protein degradation. This in vitro assay system could be widely adapted for dissecting cellular signaling pathways in which regulated proteolysis is a key recurrent theme.  相似文献   

10.
PYR1/PYL/RCAR family proteins (PYLs) are well-characterized abscisic acid (ABA) receptors. Among the 14 PYL members in Arabidopsis thaliana, PYL13 is ABA irresponsive and its function has remained elusive. Here, we show that PYL13 selectively inhibits the phosphatase activity of PP2CA independent of ABA. The crystal structure of PYL13-PP2CA complex, which was determined at 2.4 Å resolution, elucidates the molecular basis for the specific recognition between PP2CA and PYL13. In addition to the canonical interactions between PYLs and PP2Cs, an extra interface is identified involving an element in the vicinity of a previously uncharacterized CCCH zinc-finger (ZF) motif in PP2CA. Sequence blast identified another 56 ZF-containing PP2Cs, all of which are from plants. The structure also reveals the molecular determinants for the ABA irresponsiveness of PYL13. Finally, biochemical analysis suggests that PYL13 may hetero-oligomerize with PYL10. These two PYLs antagonize each other in their respective ABA-independent inhibitions of PP2Cs. The biochemical and structural studies provide important insights into the function of PYL13 in the stress response of plant and set up a foundation for future biotechnological applications of PYL13.  相似文献   

11.
Abscisic acid (ABA) is an essential hormone that controls plant growth, development and responses to abiotic stresses. ABA signaling is mediated by type 2C protein phosphatases (PP2Cs), including HAB1 and ABI2, which inhibit stress-activated SnRK2 kinases and whose activity is regulated by ABA and ABA receptors. Based on biochemical data and our previously determined crystal structures of ABI2 and the SnRK2.6–HAB1 complex, we present the catalytic mechanism of PP2C and provide new insight into PP2C–SnRK2 interactions and possible roles of other SnRK2 kinases in ABA signaling.  相似文献   

12.
Replication protein A (RPA), a single-stranded DNA-binding protein, plays essential role in homologous recombination. However, because deletion of RPA causes embryonic lethality in mammals, the exact function of RPA in meiosis remains unclear. In this study, we generated an rpa1a mutant using CRISPR/Cas9 technology and explored its function in rice (Oryza sativa) meiosis. In rpa1a, 12 bivalents were formed at metaphase I, just like in wild-type, but chromosome fragmentations were consistently observed at anaphase I. Fluorescence in situ hybridization assays indicated that these fragmentations were due to the failure of the recombination intermediates to resolve. Importantly, the mutant had a highly elevated chiasma number, and loss of RPA1a could completely restore the 12 bivalent formations in the zmm (for ZIP1-4, MSH4/5, and MER3) mutant background. Protein–protein interaction assays showed that RPA1a formed a complex with the methyl methansulfonate and UV sensitive 81 (and the Fanconi anemia complementation group M–Bloom syndrome protein homologs (RECQ4A)–Topoisomerase3α–RecQ-mediated genome instability 1 complex to regulate chiasma formation and processing of the recombination intermediates. Thus, our data establish a pivotal role for RPA1a in promoting the accurate resolution of recombination intermediates and in limiting redundant chiasma formation during rice meiosis.

RPA1a guarantees accurate meiotic recombination during rice gametogenesis, and acts as a guard to prevent excessive meiotic crossovers.  相似文献   

13.
This study offers evidence of the robustness of farmer rice varieties (Oryza glaberrima and O. sativa) in West Africa. Our experiments in five West African countries showed that farmer varieties were tolerant of sub-optimal conditions, but employed a range of strategies to cope with stress. Varieties belonging to the species Oryza glaberrima – solely the product of farmer agency – were the most successful in adapting to a range of adverse conditions. Some of the farmer selections from within the indica and japonica subspecies of O. sativa also performed well in a range of conditions, but other farmer selections from within these two subspecies were mainly limited to more specific niches. The results contradict the rather common belief that farmer varieties are only of local value. Farmer varieties should be considered by breeding programmes and used (alongside improved varieties) in dissemination projects for rural food security.  相似文献   

14.
Interaction network of core ABA signaling components in maize   总被引:1,自引:0,他引:1  

Key message

We defined a comprehensive core ABA signaling network in monocot maize, including the gene expression, subcellular localization and interaction network of ZmPYLs, ZmPP2Cs, ZmSnRK2s and the putative substrates.

Abstract

The phytohormone abscisic acid (ABA) plays an important role in plant developmental processes and abiotic stress responses. In Arabidopsis, ABA is sensed by the PYL ABA receptors, which leads to binding of the PP2C protein phosphatase and activation of the SnRK2 protein kinases. These components functioning diversely and redundantly in ABA signaling are little known in maize. Using Arabidopsis pyl112458 and snrk2.2/3/6 mutants, we identified several ABA-responsive ZmPYLs and ZmSnRK2s, and also ZmPP2Cs. We showed the gene expression, subcellular localization and interaction network of ZmPYLs, ZmPP2Cs, and ZmSnRK2s, and the isolation of putative ZmSnRK2 substrates by mass spectrometry in monocot maize. We found that the ABA dependency of PYL-PP2C interactions is contingent on the identity of the PP2Cs. Among 238 candidate substrates for ABA-activated protein kinases, 69 are putative ZmSnRK2 substrates. Besides homologs of previously reported putative AtSnRK2 substrates, 23 phosphoproteins have not been discovered in the dicot Arabidopsis. Thus, we have defined a comprehensive core ABA signaling network in monocot maize and shed new light on ABA signaling.
  相似文献   

15.
In animals, heterotrimeric G proteins, comprising α-, β-and γ-subunits, perceive extracellular stimuli through cell surface receptors, and transmit signals to ion channels, enzymes and other effector proteins to affect numerous cellular behaviours. In plants, G proteins have structural similarities to the corresponding molecules in animals but transmit signals by atypical mechanisms and effector proteins to control growth, cell proliferation, defence, stomate movements, channel regulation, sugar sensing and some hormonal responses. In this review, we summarize the current knowledge on the molecular regulation of plant G proteins, their effectors and the physiological functions studied mainly in two model organisms: Arabidopsis thaliana and rice (Oryza sativa). We also look at recent progress on structural analyses, systems biology and evolutionary studies.  相似文献   

16.
Proteins in the PYR/PYL/RCAR family (PYLs) are known as receptors for the phytohormone ABA. Upon ABA binding, PYL adopts a conformation that allows it to interact with and inhibit clade A protein phosphatase 2Cs (PP2Cs), which are known as the co-receptors for ABA. Inhibition of the PP2Cs then leads to the activation of the SnRK2 family protein kinases that phosphorylate and activate downstream effectors in ABA response pathways. The PYL family has 14 members in Arabidopsis, 13 of which have been demonstrated to function as ABA receptors. The function of PYL13, a divergent member of the family, has been enigmatic. We report here that PYL13 differs from the other PYLs in three key residues that affect ABA perception, and mutations in these three residues can convert PYL13 into a partially functional ABA receptor. Transgenic plants overexpressing PYL13 show increased ABA sensitivity in seed germination and postgermination seedling establishment as well as decreased stomatal conductance, increased water-use efficiency, accelerated stress-responsive gene expression, and enhanced drought resistance. pyl13 mutant plants are less sensitive to ABA inhibition of postgermination seedling establishment. PYL13 interacts with and inhibits some members of clade A PP2Cs (PP2CA in particular) in an ABA-independent manner. PYL13 also interacts with the other PYLs and antagonizes their function as ABA receptors. Our results show that PYL13 is not an ABA receptor but can modulate the ABA pathway by interacting with and inhibiting both the PYL receptors and the PP2C co-receptors.  相似文献   

17.
Indica and japonica are two main subspecies of Asian cultivated rice (Oryza sativa L.) that differ clearly in morphological and agronomic traits, in physiological and biochemical characteristics and in their genomic structure. However, the proteins and genes responsible for these differences remain poorly characterized. In this study, proteomic tools, including two-dimensional electrophoresis and mass spectrometry, were used to globally identify proteins that differed between two sequenced rice varieties (93–11 and Nipponbare). In all, 47 proteins that differed significantly between 93–11 and Nipponbare were identified using mass spectrometry and database searches. Interestingly, seven proteins were expressed only in Nipponbare and one protein was expressed specifically in 93–11; these differences were confirmed by quantitative real-time PCR and proteomic analysis of other indica and japonica rice varieties. This is the first report to successfully demonstrate differences in the protein composition of indica and japonica rice varieties and to identify candidate proteins and genes for future investigation of their roles in the differentiation of indica and japonica rice.  相似文献   

18.
Clade A protein phosphatases type 2C (PP2Cs) are negative regulators of abscisic acid (ABA) signaling that are inhibited in an ABA-dependent manner by PYRABACTIN RESISTANCE1 (PYR1)/PYR1-LIKE (PYL)/REGULATORY COMPONENTS OF ABA RECEPTORS (RCAR) intracellular receptors. We provide genetic evidence that a previously uncharacterized member of this PP2C family in Arabidopsis (Arabidopsis thaliana), At5g59220, is a negative regulator of osmotic stress and ABA signaling and that this function was only apparent when double loss-of-function mutants with pp2ca-1/ahg3 were generated. At5g59220-green fluorescent protein and its close relative PP2CA-green fluorescent protein showed a predominant nuclear localization; however, hemagglutinin-tagged versions were also localized to cytosol and microsomal pellets. At5g59220 was selectively inhibited by some PYR/PYL ABA receptors, and close relatives of this PP2C, such as PP2CA/ABA-HYPERSENSITIVE GERMINATION3 (AHG3) and AHG1, showed a contrasting sensitivity to PYR/PYL inhibition. Interestingly, AHG1 was resistant to inhibition by the PYR/PYL receptors tested, which suggests that this seed-specific phosphatase is still able to regulate ABA signaling in the presence of ABA and PYR/PYL receptors and therefore to control the highly active ABA signaling pathway that operates during seed development. Moreover, the differential sensitivity of the phosphatases At5g59220 and PP2CA to inhibition by ABA receptors reveals a functional specialization of PYR/PYL ABA receptors to preferentially inhibit certain PP2Cs.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号